22/08(a) The University of Sydney

<u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2001

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 15 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ${\scriptstyle \bullet}$
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Pages 6, 11, 15 & 20 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	5			
13	10			
14	10			
16	5			
17	7			
18	7			
19	6			
Total	50			
Check Total				

Mark • Complete the following table S 3 $\underline{N}O_2^ \underline{SO}_2$ \underline{SO}_3 Species Number of valence electron pairs about the underlined atom not involved in π bonding Shape of species 2 • Provide a brief explanation of the physical origin of dispersion forces between non-polar molecules. 1 • Arrange the following molecules in order of increasing molecular dipole moment. CO, CO₂, HF, HCl smallest molecular largest molecular dipole moment dipole moment 4 • Giving a full description and ionic equations for all steps, show how to convert 1 mol of copper(II) sulfate-5-water into copper(II) nitrate-6-water.

Mark • The solvation of sulfuric acid is an exothermic process with a heat of solvation, ΔH° , given S by 6 H_2O $2H^{+}(aq) + SO_{4}^{2-}(aq)$ $\Delta H^\circ = -93.5 \text{ kJ mol}^{-1}$ $H_2SO_4(l)$ Provide an explanation for why this process is exothermic. Suppose you carry out the dilution of 1.00 mol of H₂SO₄ to produce a 1.00 L solution in a calorimeter. The initial temperature is 25.0 °C, the density of the final solution is 1.060 g mL⁻¹, and its specific heat capacity is $3.50 \text{ J g}^{-1} \text{ K}^{-1}$. If the total heat capacity of the calorimeter is 90 J K⁻¹, what is the final temperature? Show all working. ANSWER: 2 • Explain briefly why the atomic orbital energy increases with *n*, the principal quantum number. 2 • Explain briefly why the atomic orbital energy is typically observed to increase with *l*, the angular momentum quantum number.

• Explain why it is, that under certain conditions, some gases (such as ammonia) have $\frac{PV}{nRT} < 1$ while other gases (such as helium) have $\frac{PV}{nRT} > 1$.	Mark s 3
 In an experiment conducted at high temperature, the effusion of gaseous phosphorus and neon was studied. Under identical conditions, the phosphorus took 2.48 times as long to effuse as the neon. How many atoms are there in a molecule of gaseous phosphorus? 	2
ANSWER:	

HEMII901/CHEMII903	2001 - J-0	June 2001	22/08(a)
For the reaction:	$2NO(g) + Br_2(g) \rightarrow$	2NOBr(g)	Mark
a suggested mechanism is:	Step 1 $NO(g) +$	$Br_2(g) \rightarrow 2NOBr_2(g)$	s 3
a suggested meentanism is.	Step 2 NOBr ₂ (g)	$H_2(g) \rightarrow 2NOBr(g)$	
(i) Write the rate law if the firs	t step in this mechanism is $\frac{1}{2}$	slow and the second fast	
(i) while the face faw if the first		siow and the second fast.	
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	· · · · · · · · · · · · · · · · · · ·	
(11) Write the rate law if the sec	cond step is slow, with the I	first step being a rapidly	
The isometican CUL	$\mathbf{V}(\mathbf{z}) \rightarrow \mathbf{C} \mathbf{U} \mathbf{C} \mathbf{V}(\mathbf{z})$	above first order kineties	4
It has an activation energy of	160 kJ mol^{-1} and the rate of	onstant measured at 600 K	
is 0.41 s^{-1} . Calculate the half-	life of this reaction at 800 I	X. Show all working.	
	ANSWER:		

• A biochemist needs 0.400 L of an acetic acid/sodium acetate buffer with pH = 4.44. Solid sodium acetate, NaCH ₃ CO ₂ and glacial acetic acid are available. Glacial acetic acid is 99% CH ₃ COOH by weight and has a density of 1.05 g mL ⁻¹ . If the K_a of CH ₃ COOH is 1.8 × 10 ⁻⁵ and the buffer is to be 0.30 M in CH ₃ COOH, what mass of NaCH ₃ CO ₂ and what volume of glacial acetic acid must be used?		
mass of $NaCH_3CO_2 =$	volume of glacial acetic acid =	_
• A 0.25 M water solution of trimethylam for trimethylamine and the pK_a for the trimethylamine and the pK and the trimethylamine and the trimethyl	nine, $(CH_3)_3N$, has a pOH of 2.40. Find the K_b methylammonium ion, $(CH_3)_3NH^+$.	3
<i>K</i> _b =	$pK_a =$	

• By determining the Gibbs free energy of reaction, determine whether the reaction $2Fe(s) + 3O_2(g) \rightarrow Fe_2O_3(s)$ is a spontaneous process under standard conditions at 298 K. Data: $\Delta_{f}S^{\circ}\{Fe_2O_3\} = -272 \text{ J K}^{-1} \text{ mol}^{-1} \text{ at } 298 \text{ K};$ $\Delta_{f}H^{\circ}\{Fe_2O_3\} = -826 \text{ kJ mol}^{-1} \text{ at } 298 \text{ K}.$	Mark s 2
$\begin{split} &2Fe(s)+3O_2(g)\rightarrowFe_2O_3(s)\\ &\text{is a spontaneous process under standard conditions at 298 K.}\\ &\text{Data:}\ \ \Delta_{f}S^{\circ}\{Fe_2O_3\}=-272\ J\ K^{-1}\ mol^{-1}\ at\ 298\ K;\\ &\Delta_{f}H^{\circ}\{Fe_2O_3\}=-826\ kJ\ mol^{-1}\ at\ 298\ K. \end{split}$	2
is a spontaneous process under standard conditions at 298 K. Data: $\Delta_{f}S^{\circ}\{Fe_{2}O_{3}\} = -272 \text{ J K}^{-1} \text{ mo}\Gamma^{1} \text{ at } 298 \text{ K};$ $\Delta_{f}H^{\circ}\{Fe_{2}O_{3}\} = -826 \text{ kJ mo}\Gamma^{1} \text{ at } 298 \text{ K}.$	
Data: $\Delta_{f}S^{\circ}\{Fe_{2}O_{3}\} = -272 \text{ J K}^{-1} \text{ mol}^{-1} \text{ at } 298 \text{ K};$ $\Delta_{f}H^{\circ}\{Fe_{2}O_{3}\} = -826 \text{ kJ mol}^{-1} \text{ at } 298 \text{ K}.$	
$\Delta_{\rm f} H^{\circ} \{ {\rm Fe}_2 {\rm O}_3 \} = -826 \text{ kJ mol}^{-1} \text{ at } 298 \text{ K.}$	
	4
• The hemoglobin molecule (Hb) carries O_2 in the blood in the form Hb O_2 . One reason CO is toxic is that it competes with O_2 for binding to Hb.	n
$Hb \cdot O_2(aq) + CO(g) \iff Hb \cdot CO(aq) + O_2(g) \qquad \Delta G^\circ = -14 \text{ kJ mol}^{-1} \text{ at } 3^\circ$	7 °C.
What is the ratio of [Hb·CO]/[Hb·O ₂] at 37 °C if $[O_2] = [CO]$?	
ANSWER:	
Use Le Châtelier's principle to suggest how to treat a victim of CO poisoning.	

22/08(b)

The University of Sydney

<u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> <u>CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903</u>

FIRST SEMESTER EXAMINATION

JUNE 2001

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ ms⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Standard atmosphere = 1.013×10^5 Pa = 760.0 mmHg Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹

Conversion factors

1 nm = 10^{-9} m 1 kJ = 10^{3} J 1 kPa = 10^{3} Pa 1 L = 10^{-3} m³

Thermochemical Data at 298 K

	$\Delta H_{ m f}^{ m o}$ / kJ mol $^{-1}$
NH ₃ (g)	-46
NO(g)	90
H ₂ O(l)	-285

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.