## W1 WORKSHOP ON STOICHIOMETRY

Q1. Calculate the mass of 2.0 mol of silicon.

```
Atomic mass of Si=28.09
Mass of 2 mol of Si=2.0 }\times\mathbf{28.09=56.18=56 g (2 significant figures)
```

Q2. Calculate the mass of 0.37 mol of barium chloride.
Formula weight of $\mathrm{BaCl}_{2}=137.3(\mathrm{Ba})+(2 \times 35.45(\mathrm{Cl}))=\mathbf{2 0 8 . 2}$
Mass of 0.37 mol of $\mathrm{BaCl}_{2}=\mathbf{0 . 3 7} \times 208.2=77.034=77 \mathrm{~g}(\mathbf{2}$ significant figures $)$

Q3. Calculate the amount (in mol) present in 2.8 g sulfur.

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{2.8}{32.07}=\mathbf{0 . 0 8 7 3 1}=0.087(2 \text { significant figures })
$$

Q4. Calculate the amount (in mol) present in 36.0 g of water.
Molecular weight of water is $16.00(\mathrm{O})+(2 \times 1.008(\mathrm{H}))=18.016$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{\mathbf{3 6 . 0}}{18.016}=\mathbf{1 . 9 9 8}=\mathbf{2 . 0 0}(\mathbf{3}$ significant figures $)$

Q5. Calculate the mass of $6.022 \times 10^{23}$ molecules of hydrogen.
Molecular weight of $\mathrm{H}_{\mathbf{2}}=2 \times 1.008=2.016$

$$
\begin{aligned}
& \mathrm{n}=\frac{\text { number of atoms }}{\text { Avogadro's number }}=\frac{6.022 \times 10^{23}}{6.022 \times 10^{23}}=1.000=1.000 \mathrm{~mol} \\
& \mathrm{~m}=\mathrm{n} \times \mathrm{M}=1.000 \times 2.016 \mathrm{~g}=2.016 \mathrm{~g}(4 \text { significant figures })
\end{aligned}
$$

Q6. Calculate the amount (in mol) present in $2.0 \times 10^{20}$ molecules of carbon dioxide.

$$
\begin{aligned}
\mathrm{n}=\frac{\text { number of atoms }}{\text { Avogadro's number }}=\frac{2.0 \times 10^{20}}{6.022 \times 10^{23}} & =3.321 \times 10^{-4} \mathrm{~mol} \\
& =3.3 \times 10^{-4} \mathrm{~mol}(2 \text { significant figures })
\end{aligned}
$$

Q7. Calculate the amount (in mol) present in 5.6 L of argon at STP.
$1 \mathbf{m o l}$ of any gas at STP occupies $\mathbf{2 2 . 4} \mathbf{L}$
$\therefore 5.6 \mathrm{~L}$ of $\mathrm{Ar}=\frac{\text { volume of gas }(\mathrm{in} \mathrm{L})}{22.4 \mathrm{~L}}=\frac{5.6}{22.4}=0.25 \mathrm{~mol}$

Q8. Calculate the mass of 50.0 L of nitrogen gas at STP.
1 mol of any gas at STP occupies $\mathbf{2 2 . 4} \mathbf{L}$
$\therefore 50.0 \mathrm{~L}$ of $\mathrm{N}_{2}=\frac{\text { volume of gas }(\text { in } \mathrm{L})}{22.4 \mathrm{~L}}=\frac{\mathbf{5 0 . 0}}{22.4}=\mathbf{2 . 2 3 2} \mathbf{~ m o l}$

Molecular weight of $\mathrm{N}_{2}=2 \times 14.01=28.02$
$\mathrm{m}=\mathbf{n} \times \mathrm{M}=\mathbf{2 . 2 3 2} \times \mathbf{2 8 . 0 2}=\mathbf{6 2 . 5 4 5}=\mathbf{6 2 . 5} \mathrm{g}$ ( $\mathbf{3}$ significant figures $)$

Q9. Calculate the atomic weight and the molecular weight of a natural sample of chlorine, which contains the isotopes: ${ }^{35} \mathrm{Cl}$ (at. wt. $34.97,75.77 \%$ ) and ${ }^{37} \mathrm{Cl}$ (at. wt. 36.97, 24.23\%).

The relative atomic mass of chlorine is the weighted average of the masses of its isotopes:
$\left(34.97 \times \frac{75.77}{100}\right)+\left(36.97 \times \frac{24.23}{100}\right)=35.45(4$ significant figures $)$
Molecular weight of $\mathrm{Cl}_{2}=35.45 \times 2=70.90$

Q10. Determine the percentage by weight of bromide ion in potassium bromide ( KBr ).
Atomic weight of $\mathbf{B r}=79.90 \quad$ Atomic weight of $\mathrm{K}=39.10$
$\%$ weight of $B r$ in $K B r=\frac{79.90}{(39.10+79.90)}=67.14 \%$

Q11. An iron ore has the composition of $70.0 \% \mathrm{Fe}$ and $30.0 \% \mathrm{O}$ by mass. What is the empirical formula of the ore?

|  | Fe | O |
| :---: | :---: | :---: |
| amount in 100 g | 70.0 | 30.0 |
| ratio (divide by <br> atomic mass) | $\frac{70.0}{55.85}=1.250$ | $\frac{30.0}{16.00}=1.875$ |
| divide by smallest | $\frac{1.250}{1.250}=1.000 \sim 1$ | $\frac{1.875}{1.250}=1.500 \sim 1.5$ |

The smallest integer ratio is 2: $\mathbf{3}$ so the empirical formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Q12. An organic compound containing only carbon, hydrogen and oxygen returns the $\%$ mass analysis: C $64.9 \%$; H $13.5 \%$. What is its empirical formula?

As the compound contains only $\mathrm{C}, \mathrm{H}$ and O , their percentages by mass must add up to $\mathbf{1 0 0 \%}$. Hence, the percentage of $O$ is $100-(64.9+13.5)=21.6 \%$

|  | C | H | O |
| :---: | :---: | :---: | :---: |
| amount in 100 g | 64.9 | 13.5 | 21.6 |
| ratio (divide by <br> atomic mass) | $\frac{64.9}{12.01}=5.404$ | $\frac{13.5}{1.008}=13.39$ | $\frac{21.6}{16.00}=1.350$ |
| divide by smallest | $\frac{5.404}{1.350}=4.00 \sim 4$ | $\frac{13.39}{1.350}=9.92 \sim 10$ | $\frac{1.350}{1.350}=1.00 \sim 1$ |

The empirical formula is $\mathrm{C}_{4} \mathrm{H}_{\mathbf{1 0}} \mathrm{O}$

Q13. Balance each of the following molecular equations:

| $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$ | $\rightarrow 2 \mathrm{CO}(\mathrm{g})$ |
| :--- | :--- | :--- |
| $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ | $\rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ |
| $2 \mathrm{Na}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{l})$ | $\rightarrow 2 \mathrm{NaBr}(\mathrm{s})$ |
| $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$ | $\rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ |

Q14. Complete the following table. (See page E2-1 if you need help.)

| Formula | Name | Formula | Name |
| :--- | :--- | :---: | :--- |
| $\mathrm{OH}^{-}$ | hydroxide ion | $\mathbf{C H}_{3} \mathbf{C O}_{2}{ }^{-}$ | acetate ion |
| $\mathbf{N O}_{2}{ }^{-}$ | nitrite ion | $\mathrm{CN}^{-}$ | cyanide ion |
| $\mathbf{N O}_{3}{ }^{-}$ | nitrate ion | $\mathrm{HS}^{-}$ | hydrogensulfide ion |
| $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ | oxalate ion | $\mathbf{M n O}_{4}{ }^{-}$ | permanganate ion |
| $\mathbf{C l O}_{4}{ }^{-}$ | perchlorate ion | $\mathbf{H C O}_{3}{ }^{-}$ | hydrogencarbonate ion |
| $\mathbf{C O}_{3}{ }^{\mathbf{2 -}}$ | carbonate ion | $\mathbf{P O}_{4}{ }^{\mathbf{3 -}}$ | phosphate ion |
| $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ | thiosulfate ion | $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ | dihydrogenphosphate ion |
| $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$ | sulfate ion | $\mathbf{N H}_{4}{ }^{+}$ | ammonium ion |
| $\mathbf{S O}_{3}{ }^{\mathbf{2 -}}$ | sulfite ion | $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ | dichromate ion |

Q15. Indicate the charges on the ions and balance the following ionic equations:

| $\mathrm{KI}(\mathrm{s})$ | $\rightarrow$ | $\mathrm{K}^{+}(\mathrm{aq}) \quad+\mathrm{I}(\mathrm{aq})$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ | $\rightarrow$ | $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})$ |
| $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ | $\rightarrow$ | $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ |
| $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ | $\rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$ |  |

continues on the next page

Q16. Write the ionic equations for the reactions that occur when solid sodium carbonate and solid calcium chloride dissolve in water. Also write the ionic equation for the precipitation of calcium carbonate resulting from mixing the two solutions.

| $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ | $\rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ |
| :--- | :--- | :--- |
| $\mathrm{CaCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$ |  |
| $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$ |  |

Q17. Calculate the mass of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$ required to make 250 mL of a 0.100 M solution.

## $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathbf{1 0 H}_{2} \mathrm{O}$ has formula weight:

$(2 \times 22.99(\mathrm{Na}))+\mathbf{1 2 . 0 1 ( \mathrm { C } ) + ( 3 \times 1 6 . 0 0 ( \mathrm { O } ) ) + 1 0 \times ( 1 6 . 0 0 ( \mathrm { O } ) + 2 \times 1 . 0 0 8 ( \mathrm { H } ) ) ( 1 ) ~}$

$$
=286.15
$$

$1000 \mathbf{m L}$ of $\mathbf{0 . 1 0 0} \mathrm{M}$ solution contains $\mathbf{0 . 1 0 0} \mathbf{~ m o l}$

250 mL of $\mathbf{0 . 1 0 0} \mathrm{M}$ solution contains $(\mathbf{0 . 1 0 0} \times \mathbf{0 . 2 5 0}) \mathrm{mol}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathbf{1 0} \mathrm{H}_{2} \mathrm{O}$
250 mL of 0.100 M solution contains $(0.100 \times 0.250) \times 286.15 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathbf{1 0} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ $=7.15 \mathrm{~g}$ ( $\mathbf{3}$ significant figures)

Q18. What mass of barium sulfate will be precipitated when 125 mL of a 0.20 M solution of barium chloride is mixed with 200 mL of a 0.17 M solution of sodium sulfate. (Hint: work out which reagent is limiting.)

```
BaCl }+\mp@subsup{\mathbf{Na}}{2}{}\mp@subsup{\mathbf{SO}}{4}{}->\mp@subsup{\mathbf{BaSO}}{4}{}+\mathbf{2NaCl
Amount of BaCl }=0.20\times0.125=0.025 mol
Amount of Na2}\mp@subsup{\textrm{NO}}{4}{}=0.17\times0.200=0.034 mol
As one mole of BaCl }\mp@subsup{\mathbf{B}}{2}{}\mathrm{ is required for every one mole of Na}\mp@subsup{\mathbf{Na}}{2}{}\mp@subsup{\mathbf{SO}}{4}{},\mp@subsup{\textrm{BaCl}}{2}{}\mathrm{ is the limiting reagent
```



```
Mass of BaSO}44\mp@code{precipitated =233.37 }\times0.025=5.834=5.8(2 significant figures
```

Q19. Pure formic acid $(\mathrm{HCOOH})$, is a liquid monoprotic acid decomposed by heat to carbon dioxide and hydrogen, according to the following equation:

$$
\mathrm{HCOOH}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

(i) The density of formic acid is $1.220 \mathrm{~g} \mathrm{~mL}^{-1}$. How many moles of HCOOH are in 1 L of pure formic acid?

Molecular weight of $\mathbf{H C O O H}=12.01(\mathrm{C})+(2 \times 1.008(\mathrm{H}))+(2 \times 16.00(\mathrm{O}))=46.026$
1 mL of HCOOH has mass 1.220 g
1000 mL of HCOOH has mass 1220 g
1000 mL of HCOOH contains $1220 / 46.026=26.51 \mathrm{~mol}$ ( $\mathbf{4}$ significant figures)
(ii) What mass of pure formic acid should be diluted to 1.00 L to form a 2.00 M solution?

Molecular weight of $\mathrm{HCOOH}=12.01(\mathrm{C})+(2 \times 1.008(\mathrm{H}))+(2 \times 16.00(\mathrm{O}))=46.026$
2.00 mol of $\mathbf{H C O O H}$ has mass $2.00 \times 46.026=92.052=92.1 \mathrm{~g}(\mathbf{3}$ significant figures $)$
(iii) What volume of 0.250 M sodium hydroxide solution would react with 30.0 mL of this dilute solution of formic acid, according to the following equation?

$$
\mathrm{HCOOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{HCOO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

30.0 mL of 2.00 M HCOOH solution contains $2.00 \times \mathbf{0 . 0 3 0 0}=\mathbf{0 . 0 6 0 0} \mathbf{~ m o l}$ of HCOOH

Volume $=\frac{\text { number of moles }(\text { in mol })}{\text { concentration }(\text { in } M)}=\frac{0.0600}{0.250}=0.240 \mathrm{~L}=240 \mathrm{~mL}(3$ significant figures)
(iv) What is the maximum volume of carbon dioxide at STP that could be obtained by heating 1.0 mol of formic acid?

From equation stoichiometry, $1 \mathbf{~ m o l}$ of $\mathbf{H C O O H}$ produces 1 mol of $\mathrm{CO}_{2}$.
$1 \mathbf{m o l}$ of any gas at STP has volume 22.4 L .
(v) How many molecules of carbon dioxide would it contain?
$1 \mathbf{m o l}$ of any substance contains $N_{\mathrm{A}}$ molecules $=6.022 \times 10^{23}$ molecules.

Q20. Consider the reaction $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Identify the limiting reagent in each of the following reaction mixtures. What mass of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ will be produced in each case?
1.0 mol Al and $1.0 \mathrm{~mol} \mathrm{O}_{2}$

Al is limiting
$4 \mathbf{~ m o l ~ o f ~} \mathrm{Al}$ reacts with $\mathbf{3 ~ m o l ~ o f ~} \mathrm{O}_{\mathbf{2}}$ to give $\mathbf{2} \mathbf{~ m o l ~ o f ~} \mathrm{Al}_{2} \mathrm{O}_{\mathbf{3}}$
Therefore $1 \mathbf{~ m o l}$ of Al reacts with $\frac{3}{4} \mathbf{~ m o l}$ of $\mathrm{O}_{2}$ to give $\frac{2}{4} \mathbf{m o l}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$
Formula weight of $\mathrm{Al}_{2} \mathrm{O}_{3}=(2 \times 26.98(\mathrm{Al}))+(3 \times 16.00(\mathrm{O}))=101.96$
$\frac{\mathbf{2}}{\mathbf{4}} \mathbf{~ m o l ~ o f ~} \mathrm{Al}_{2} \mathrm{O}_{\mathbf{3}}$ has mass $101.96 \times \frac{\mathbf{2}}{\mathbf{4}}=\mathbf{5 0 . 9 8}=\mathbf{5 1} \mathrm{g}(\mathbf{2}$ significant figures $)$
0.75 mol Al and $0.50 \mathrm{~mol} \mathrm{O}_{2}$
$\mathrm{O}_{2}$ is limiting
$4 \mathbf{~ m o l}$ of Al reacts with $\mathbf{3} \mathbf{~ m o l}$ of $\mathrm{O}_{\mathbf{2}}$ to give $\mathbf{2} \mathbf{~ m o l ~ o f ~} \mathrm{Al}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$
Therefore $4 \times \frac{0.5}{3} \mathbf{m o l}$ of Al react with 0.5 mol of $\mathrm{O}_{2}$ reacts with to give $2 \times \frac{0.5}{3} \mathbf{~ m o l ~ o f ~} \mathrm{Al}_{2} \mathrm{O}_{3}$
Formula weight of $\mathrm{Al}_{2} \mathrm{O}_{3}=(2 \times 26.98(\mathrm{Al}))+(3 \times 16.00(\mathrm{O}))=101.96$
$2 \times \frac{0.5}{3} \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ has mass $101.96 \times 2 \times \frac{0.5}{3}=33.99=34 \mathrm{~g}$ ( 2 significant figures)
75.89 g Al and $112.25 \mathrm{~g} \mathrm{O}_{2}$

Amount of $\mathrm{Al}=\frac{75.89}{26.98}=2.8128 \mathrm{~mol} \quad$ Amount of $\mathrm{O}_{2}=\frac{112.25}{(2 \times 16.00)}=\mathbf{3 . 5 0 7 8} \mathrm{mol}$
Al is limiting
$4 \mathbf{~ m o l}$ of Al reacts with $\mathbf{3} \mathbf{~ m o l ~ o f ~} \mathrm{O}_{\mathbf{2}}$ to give $\mathbf{2} \mathbf{~ m o l ~ o f ~} \mathrm{Al}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$
Therefore 2.813 mol of Al reacts with $3 \times \frac{2.813}{4} \mathrm{~mol}$ of $\mathrm{O}_{2}$ to give $2 \times \frac{2.813}{4} \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$
Formula weight of $\mathrm{Al}_{2} \mathrm{O}_{3}=(2 \times 26.98(\mathrm{Al}))+(3 \times 16.00(\mathrm{O}))=101.96$
$2 \times \frac{2.813}{4} \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ has mass $101.96 \times 2 \times \frac{2.813}{4}=143.4 \mathrm{~g}$ ( 4 significant figures)
continues on the next page
$51.28 \mathrm{~g} \mathrm{Al}^{\text {and }} 48.22 \mathrm{~g} \mathrm{O}_{2}$
Amount of $\mathrm{Al}=\frac{\mathbf{5 1 . 2 8}}{26.98}=1.9007 \mathrm{~mol} \quad$ Amount of $\mathrm{O}_{2}=\frac{48.22}{(2 \times 16.00)}=1.5069 \mathrm{~mol}$
Al is limiting
$4 \mathbf{~ m o l}$ of Al reacts with $\mathbf{3} \mathbf{~ m o l}$ of $\mathrm{O}_{\mathbf{2}}$ to give $\mathbf{2} \mathbf{~ m o l ~ o f ~} \mathrm{Al}_{2} \mathrm{O}_{\mathbf{3}}$
Therefore 1.9007 mol of Al reacts with $3 \times \frac{1.9007}{4} \mathrm{~mol}$ of $\mathrm{O}_{2}$ to give $2 \times \frac{1.9007}{4} \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$

Formula weight of $\mathrm{Al}_{2} \mathrm{O}_{3}=(2 \times 26.98(\mathrm{Al}))+(3 \times 16.00(\mathrm{O}))=101.96$
$2 \times \frac{1.9007}{4} \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ has mass $101.96 \times 2 \times \frac{1.9007}{4}=96.90 \mathrm{~g}(4$ significant figures $)$

