CHEM1001	2006-J-2		June 2006	22/01(a)
• Balance the following nuclear reactions by identifying the missing nuclear particle.				Marks 2
	$^{234}_{90}$ Th \rightarrow 234 $_{91}$	Pa + ${}^{0}_{-1}$ e		
	$^{234}_{92}\mathrm{U} \rightarrow ^{230}_{90}$	$\mathbf{\Gamma}\mathbf{h}$ + $\frac{4}{2}$ He		
• A nugget contains 2.6×10^{24} atoms of gold. What amount of gold (in mol) is in this nugget and what is its mass (in kg)?				2
One mole of gold corresponds to Avogadro's number, 6.022×10^{23} , atoms. 2.6×10^{24} atoms therefore corresponds to:				
number of moles = $\frac{\text{number of atoms}}{\text{Avogadro's number}} = \frac{2.6 \times 10^{24}}{6.022 \times 10^{23}} = 4.3 \text{ mol}$				
As one mole of gold has a mass, corresponding to the atomic mass, of 196.97 g. 4.3 mol of gold therefore corresponds to:				
mass = number of moles \times atomic mass = 4.3 \times 196.97 = 850 g = 0.85 kg				
(Note that the number of atoms is given to 2 significant figures in the question and this is reflected in the answers).				
Amount: 4.3 mol Mass: 0.85 kg				