• The complete combustion of butane, C_4H_{10} , in air gives water and carbon dioxide as the products. Write a balanced equation for this reaction.

 $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g) \text{ or }$

 $C_4H_{10}(g) + {}^{13}/_2O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$

What mass of oxygen is required for the complete combustion of 454 g of butane and what masses of carbon dioxide and water are produced?

The molar mass of butane is $(4 \times 12.01 (C)) + (10 \times 1.008 (H)) = 58.12$. Therefore, the amount of butane in 454 g is:

number of moles of $C_4H_{10} = \frac{mass}{molar mass} = \frac{454}{58.12} = 7.81 mol$

From the chemical equation, each mole of C_4H_{10} requires ¹³/₂ moles of O_2 and produces 4 moles of CO_2 and 5 moles of H_2O .

Therefore:

number of moles of $O_2 = {}^{13}/_2 \times 7.81 = 50.8$ mol number of moles of $CO_2 = 4 \times 7.81 = 31.2$ mol number of moles of $O_2 = 5 \times 7.81 = 39.1$ mol

The molar masses of O₂, CO₂ and H₂O are:

molar mass of $O_2 = 2 \times 16.00 = 32.00$ molar mass of $CO_2 = 12.01$ (C) + $(2 \times 16.00) = 44.01$ molar mass of $H_2O = (2 \times 1.008$ (H)) + 16.00 (O)= 18.016

Therefore:

mass of O_2 = number of moles × molar mass = $50.8 \times 32.00 = 1620$ g = 1.62 kg mass of $CO_2 = 31.2 \times 44.01 = 1380$ g = 1.38 kg mass of $H_2O = 39.1 \times 18.016 = 704$ g = 0.704 kg