CHEM1001 2007-J-4 June 2007 22/01(a)

4

• During physical activity, lactic acid forms in the muscle tissue and is responsible for muscle soreness. Elemental analysis shows that it contains by mass 40.0% C, 6.71% H and 53.3% O. Determine the empirical formula of lactic acid.

	C	Н	0
amount in 100 g	40.0	6.71	53.3
ratio (divide by	$\frac{40.0}{1}$ = 3.33	6.71	53.3
atomic mass)	$\frac{40.0}{12.01} = 3.33$	$\frac{6.71}{1.008} = 6.66$	$\frac{60.0}{16.00} = 3.33$
divide by	$\frac{3.33}{}$ = 1.00 ~1	$\frac{6.66}{}$ = 2.00 ~ 2	$\frac{3.33}{1.00}$
smallest	${3.33}$ = 1.00 ~1	${3.33} = 2.00 \sim 2$	$\frac{3.33}{3.33} = 1.00$

The simplest possible ratio of C:H:O is thus 1:2:1 and the empirical formula is CH₂O.

Answer: CH₂O

Given that lactic acid has a molar mass of 90.08 g mol⁻¹, determine its molecular formula.

The molecular formula is $(CH_2O)_n$ so the molar mass is:

molar mass =
$$n \times (12.01 (C) + 2 \times 1.008 (H) + 16.00 (O))$$

= $30.026n = 90.08$ so $n = 3$

The molecular formula is thus (CH₂O)₃ or C₃H₆O₃

Answer: C₃H₆O₃