June 2008

Marks What mass of oxygen is required for the complete combustion of 5.8 g of butane, 4 C₄H_{10.} How many moles of CO₂ and H₂O are produced? The molar mass of butane, C₄H₁₀, is: molar mass = $M = (4 \times 12.01 \text{ (C)} + 10 \times 1.008 \text{ (H)}) \text{ g mol}^{-1} = 58.12 \text{ g mol}^{-1}$ Hence, the 5.8 g corresponds to: number of moles = $\frac{\text{mass}}{\text{number of moles}} = \frac{m}{M} = \frac{5.8 \text{ g}}{58.12 \text{ g mol}^{-1}} = 0.10 \text{ mol}$ The balanced equation for the combustion of butane is: $C_4H_{10}(g) + \frac{13}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$ Hence, 13/2 moles of O₂ are required and 4 moles of CO₂ and 5 moles of H₂O are produced for every mole of C_4H_{10} which combusts. As 0.10 mol of C_4H_{10} is present: number of moles of O₂ needed = $\frac{13}{2} \times 0.10$ mol = 0.65 mol number of moles of CO_2 produced = 4×0.10 mol = 0.40 mol number of moles of H_2O produced = 5×0.10 mol = 0.50 mol O_2 has a molar mass of (2 × 16.00) g mol⁻¹ = 32.00 g mol⁻¹. Hence the mass of O_2 required is: mass = number of moles × molar mass $= nM = (0.65 \text{ mol}) \times (32.00 \text{ g mol}^{-1}) = 21 \text{ g}$