• Direct damage to the DNA of skin cells can be brought about by exposure to ultraviolet radiation of wavelength 300 nm. What are the frequency and energy (in kJ mol ⁻¹) of this radiation? The frequency, v, and the wavelength, λ of the radiation are related by $c = v\lambda$. Hence: $v = \frac{c}{\lambda} = \frac{2.998 \times 10^8 \text{ m s}^{-1}}{300 \times 10^{-9} \text{ m}} = 1 \times 10^{15} \text{ s}^{-1} = 1 \times 10^{15} \text{ Hz}$ The energy of the radiation is given by $E = hv = \frac{hc}{\lambda}$. Hence: $E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1})}{(300 \times 10^{-9} \text{ nm})} = 6.62 \times 10^{-19} \text{ J}$ This is the energy per photon. For a mole, the energy is: $E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$ Frequency: $1 \times 10^{15} \text{ Hz}$				
The frequency, v, and the wavelength, λ of the radiation are related by $c = v\lambda$. Hence: $v = \frac{c}{\lambda} = \frac{2.998 \times 10^8 \text{ m s}^{-1}}{300 \times 10^{-9} \text{ m}} = 1 \times 10^{15} \text{ s}^{-1} = 1 \times 10^{15} \text{ Hz}$ The energy of the radiation is given by $E = hv = \frac{hc}{\lambda}$. Hence: $E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1})}{(300 \times 10^{-9} \text{ nm})} = 6.62 \times 10^{-19} \text{ J}$ This is the energy per photon. For a mole, the energy is: $E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$ Frequency: $1 \times 10^{15} \text{ Hz}$ Energy: 400 kJ mol ⁻¹	• Direct damage to the DNA of skin cells can be brought about by exposure to ultraviolet radiation of wavelength 300 nm. What are the frequency and energy (in kJ mol ⁻¹) of this radiation?			Marks 4
$v = \frac{c}{\lambda} = \frac{2.998 \times 10^8 \text{ m s}^{-1}}{300 \times 10^{-9} \text{ m}} = 1 \times 10^{15} \text{ s}^{-1} = 1 \times 10^{15} \text{ Hz}$ The energy of the radiation is given by $E = hv = \frac{hc}{\lambda}$. Hence: $E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1})}{(300 \times 10^{-9} \text{ nm})} = 6.62 \times 10^{-19} \text{ J}$ This is the energy per photon. For a mole, the energy is: $E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$ Frequency: $1 \times 10^{15} \text{ Hz}$ Energy: 400 kJ mol}^{-1}	The frequency, v, and the wavelength, λ of the radiation are related by $c = v\lambda$. Hence:			
The energy of the radiation is given by $E = hv = \frac{hc}{\lambda}$. Hence: $E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1})}{(300 \times 10^{-9} \text{ nm})} = 6.62 \times 10^{-19} \text{ J}$ This is the energy per photon. For a mole, the energy is: $E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$ Frequency: $1 \times 10^{15} \text{ Hz}$ Energy: 400 kJ mol^{-1}	$v = \frac{c}{\lambda} = \frac{2.998 \times 10^8 \text{ m s}^{-1}}{300 \times 10^{-9} \text{ m}} = 1 \times 10^{15} \text{ s}^{-1} = 1 \times 10^{15} \text{ Hz}$			
$E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1})}{(300 \times 10^{-9} \text{ nm})} = 6.62 \times 10^{-19} \text{ J}$ This is the energy per photon. For a mole, the energy is: $E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$ Frequency: $1 \times 10^{15} \text{ Hz}$ Energy: 400 kJ mol^{-1}	The energy of the radiation is given by $E = hv = \frac{hc}{\lambda}$. Hence:			
This is the energy per photon. For a mole, the energy is: $E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$ Frequency: $1 \times 10^{15} \text{ Hz}$ Energy: 400 kJ mol^{-1}	$E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J s})(2.998 \times 10^8 \text{ m s}^{-1})}{(300 \times 10^{-9} \text{ nm})} = 6.62 \times 10^{-19} \text{ J}$			
$E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$ Frequency: $1 \times 10^{15} \text{ Hz}$ Energy: 400 kJ mol ⁻¹	This is the energy per photon. For a mole, the energy is:			
Frequency: 1×10^{15} Hz Energy: 400 kJ mol ⁻¹	$E = (6.62 \times 10^{-19} \text{ J}) \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 400000 \text{ J mol}^{-1} = 400 \text{ kJ mol}^{-1}$			
	Frequency: 1×10^{15} Hz		Energy: 400 kJ mol ⁻¹	

2009-J-6

CHEM1001

_

June 2009

22/01(a)