Leau foils feact with bronning foils accord	ling to the following equation.		
$Pb^{2+}(aq) + 2Br^{2+}(aq)$	$(aq) \rightarrow PbBr_2(s)$		
If 0.040 M lead(II) nitrate solution (100.0 mL) is added to 0.020 M potassium bromide solution (300.0 mL), what amount (in mol) of lead(II) bromide precipitates?			
The number of moles of Pb ²⁺ ions in 10 is:	00.0 mL of a 0.040 M solution of Pb(NO ₃) ₂		
number of moles = concentration × volume = $(0.040 \text{ mol } \text{L}^{-1}) \times (0.1000 \text{ L}) = 0.0040 \text{ mol}$ The number of moles of Br ⁻ ions in 300.0 mL of a 0.020 M solution of KBr is: number of moles = $(0.020 \text{ mol } \text{L}^{-1}) \times (0.3000 \text{ L}) = 0.0060 \text{ mol}$ The precipitation reaction requires 2 Br ⁻ ions for every Pb ²⁺ ion. As there is <i>less</i> than twice as much Br ⁻ than Pb ²⁺ , it is the Br ⁻ that is the limiting reagent.			
		From the chemical equation, 2 mol of 1	Br ⁻ leads to 1 mol of PbBr ₂ (s) and so:
		number of moles of PbBr ₂ (s) forme	d = ½ × 0.0060 mol = 0.0030 mol
	Answer: 0.0030 mol		
What is the final concentration of $NO_3^{-}(a)$ reaction?	Answer: 0.0030 mol aq) ions remaining in solution after the		
What is the final concentration of $NO_3^-(a reaction?)$ NO ₃ ⁻ is not involved in the reaction: it the reaction is the same as at the begin forms 1 mol of Pb ²⁺ (aq) and 2 mol of N NO ₃ ⁻ (aq) present is:	Answer: 0.0030 mol aq) ions remaining in solution after the is a spectator ion. The amount present are ming. When 1 mol of Pb(NO ₃) ₂ dissolves, it NO ₃ ⁻ (aq). Hence, the number of moles of		
What is the final concentration of $NO_3^-(a reaction?)$ NO ₃ ⁻ is not involved in the reaction: it the reaction is the same as at the begin forms 1 mol of Pb ²⁺ (aq) and 2 mol of N NO ₃ ⁻ (aq) present is: number of moles = 2 × (0.040 mol L	Answer: 0.0030 mol aq) ions remaining in solution after the is a spectator ion. The amount present are ming. When 1 mol of Pb(NO ₃) ₂ dissolves, it NO ₃ ⁻ (aq). Hence, the number of moles of r^{-1} × (0.1000 L) = 0.0080 mol		
What is the final concentration of $NO_3^-(a reaction?)$ NO ₃ ⁻ is not involved in the reaction: it the reaction is the same as at the begin forms 1 mol of Pb ²⁺ (aq) and 2 mol of N NO ₃ ⁻ (aq) present is: number of moles = 2 × (0.040 mol L After the solutions are mixed, the total	Answer: 0.0030 mol aq) ions remaining in solution after the is a spectator ion. The amount present are using. When 1 mol of Pb(NO ₃) ₂ dissolves, it NO ₃ ^{-(aq)} . Hence, the number of moles of L^{-1} × (0.1000 L) = 0.0080 mol I volume is (100.0 + 300.0) mL = 400.0 mL.		
What is the final concentration of NO_3^- (a reaction? NO_3^- is not involved in the reaction: it the reaction is the same as at the begin forms 1 mol of Pb ²⁺ (aq) and 2 mol of N NO_3^- (aq) present is: number of moles = 2 × (0.040 mol L After the solutions are mixed, the total This amount is now present in this volu	Answer: 0.0030 mol aq) ions remaining in solution after the is a spectator ion. The amount present are uning. When 1 mol of Pb(NO ₃) ₂ dissolves, it NO ₃ ^{-(aq)} . Hence, the number of moles of r^{-1} × (0.1000 L) = 0.0080 mol l volume is (100.0 + 300.0) mL = 400.0 mL. ume and so has a concentration:		
What is the final concentration of NO ₃ ⁻ (a reaction? NO ₃ ⁻ is not involved in the reaction: it the reaction is the same as at the begin forms 1 mol of Pb ²⁺ (aq) and 2 mol of N NO ₃ ⁻ (aq) present is: number of moles = 2 × (0.040 mol L After the solutions are mixed, the total This amount is now present in this volt concentration = number of moles / v	Answer: 0.0030 mol aq) ions remaining in solution after the is a spectator ion. The amount present are ming. When 1 mol of Pb(NO ₃) ₂ dissolves, it NO ₃ ^{-(aq)} . Hence, the number of moles of r^{-1} × (0.1000 L) = 0.0080 mol I volume is (100.0 + 300.0) mL = 400.0 mL. ume and so has a concentration: volume = 0.0080 mol / 0.4000 L = 0.020 M		