- Balance the following equation:

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\mathbf{4} \mathrm{NH}_{\mathbf{3}}(\mathrm{g})+\mathbf{5 O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{4 N O}(\mathrm{g})+\mathbf{6} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{l})$

Calculate the mass of NH_{3} required to produce 140. g of water.

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is:

$$
\text { molar mass }=[2 \times 1.008(\mathrm{H})+16.00(\mathrm{O})] \mathrm{g} \mathrm{~mol}^{-1}=18.016 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Hence, the number of moles of water produced is:
number of moles $=$ mass $/$ molar mass $=(140 . \mathrm{g}) /\left(18.016 \mathrm{~g} \mathrm{~mol}^{-1}\right)=7.771 \mathrm{~mol}$
From the balanced equation, $4 \mathbf{~ m o l}$ of NH_{3} will produce $6 \mathbf{~ m o l}$ of $\mathrm{H}_{\mathbf{2}} \mathrm{O}$. Hence, to produce 7.771 mol of $\mathrm{H}_{2} \mathrm{O}$ so:
number of moles of $\mathrm{NH}_{3}=(4 / 6) \times 7.771 \mathrm{~mol}=5.18 \mathbf{~ m o l}$
The molar mass of $\mathbf{N H}_{3}$ is:

$$
\text { molar mass }=[14.01(\mathrm{~N})+3 \times 1.008(\mathrm{H})] \mathrm{g} \mathrm{~mol}^{-1}=17.034 \mathrm{~g} \mathrm{~mol}^{-1}
$$

The mass of NH_{3} in $5.18 \mathbf{~ m o l}$ is therefore:

$$
\text { mass }=\text { number of moles } \times \text { molar mass }=(5.18 \mathrm{~mol}) \times\left(17.034 \mathrm{~g} \mathrm{~mol}^{-1}\right)=88.2 \mathrm{~g}
$$

Answer: $\mathbf{8 8 . 2} \mathrm{g}$

