CHE	M1001 2	014-J-2	June 201	4	22/01(a)
• Cc	• Complete the following table by filling in the compound name or formula as required.			Marks 4	
	Name		Formula		
	copper(II) sulfate		CuSO ₄		
	sodium nitrate		NaNO ₃		
	magnesium chloride		MgCl ₂		
	iron(III) oxide		Fe ₂ O ₃		

CHEN	CHEM1001 2013-J-5		June 2013		22/01(a)
• Co	• Complete the following table by filling in the compo		ound name or formula as	required.	Marks 2
	Name		Formula		
	lead(II) chloride		PbCl ₂		
	dinitrogen trioxide		N_2O_3		
	sodium sulphate		Na ₂ SO ₄		
	sulfur hexafluoride		SF_6		

Marks 2

٠	Complete	the	follow	ving	table.
---	----------	-----	--------	------	--------

Name	Formula
calcium nitride	Ca ₃ N ₂
carbon tetrabromide	CBr ₄
iron(III) oxide	Fe ₂ O ₃
sulfuric acid	H ₂ SO ₄

constituent ions).

Marks • Depict the arrangement of water molecules around an ion. Explain why many ionic 3 compounds are soluble in water. negatively charged ion positively ? _____ charged ion Η .Ο、 [₩]_H^O_H `O´ н_о Η Θ Н Н ?+ ?+ Н dipolar water molecule positive end of water attracted negative end of water attracted to negatively charged ion to positively charged ion Water is a dipolar molecule. The positive ends (H) can directly interact with negative ions, while the negative end (O) can directly interact with positive ions. These interactions (called hydration enthalpy) are often sufficient to overcome the lattice enthalpy (the energy required to break up the ionic solid into its

Marks 2

• Complete the following table.

Name	Formula	
ammonia	NH ₃	
phosphorus trichloride	PCl ₃	
potassium hydrogencarbonate	KHCO ₃	
calcium phosphate	Ca ₃ (PO ₄) ₂	

_

Comple	ete the following table.		Mark 4
	Formula	Systematic name	
	CaBr ₂	calcium bromide	
	KHCO ₃	potassium hydrogencarbonate	
	KMnO ₄	potassium permanganate	
	Fe(NO ₃) ₃	iron(III) nitrate	

• Account for why solid metals can conduct an electric current, but solid ionic compounds cannot.

Marks 3

The crystal structure of a metal consists of a lattice of positively charged nuclei surrounded by a "sea of electrons". These electrons are free to move under the influence of an electric field so can conduct the current.

An ionic solid consists of a lattice of positive and negative ions, packed together to minimise repulsion and maximise attraction. The atomic nuclei are fixed in place and all the electrons are localised around them so they are unable to conduct the current (They can conduct current when molten as the ions are then free to move.)

CHEM1001	2006-J-3	June 2006	22/01(a)	
• Give the formula and na elements.	ame of the binary co	ompound formed from the following	2	
	Formula	Name		
lithium and oxygen	Li ₂ O	lithium oxide		
calcium and hydrogen	CaH ₂	calcium hydride		

• Ionising radiation is defined as radiation that has energy greater than 1.93×10^{-18} J per photon. Using this criterion, determine whether UV light of $v = 1.00 \times 10^{16}$ Hz would be ionising.

The energy of electromagnetic radiation with frequency *v* is given by:

E = hv

where $h = 6.626 \times 10^{-34}$ J s (Planck's constant).

For UV light of $v = 1.00 \times 10^{16}$ Hz,

 $E = (6.626 \times 10^{-34} \text{ J s}) (1.00 \times 10^{16} \text{ s}^{-1}) = \underline{6.63 \times 10^{-18} \text{ J}}$

This energy is greater than 1.93×10^{-18} J so the radiation is ionizing

• The atoms in both iodine and diamond are joined by covalent bonds. However, iodine is a soft, low-melting point solid while diamond is very hard and has an extremely high melting point. Account for these differences in properties.

Iodine consists of discrete I_2 molecules. The intermolecular forces between these I_2 units are weak dispersion forces, so the solid is soft with a low melting point. (The strength of the I-I bond is essentially irrelevant.) Diamond consists of a giant 3-dimensional array of carbon atoms in a tetrahedral arrangement. Each atom is covalently bonded to its neighbour to give one giant molecule (covalent network solid). The C-C covalent bond is very strong, so diamond is hard with a high melting point. 2

CHEM1001

• Give the formula and name of a binary ionic compound formed from the following elements.

	Formula	Name
magnesium and oxygen	MgO	magnesium oxide
barium and bromine	BaBr ₂	barium bromide
sodium and nitrogen	Na ₃ N	sodium nitride
potassium and oxygen	K ₂ O	potassium oxide

• Explain why some ionic compounds are soluble in water and usually insoluble in hydrocarbon solvents such as kerosene.

When an ionic solid dissolves, the strong ionic bonds between the constituent ions need to be broken (lattice enthalpy). In water, strong bonds are formed between the ions and the highly polar water molecules to give aquated ionic species. The energy released in this process (enthalpy of solvation) is sufficient to overcome the lattice enthalpy and the solid dissolves. In kerosene, there is little attraction between the ions and the non-polar solvent. The solvation enthalpy is very small in this case, certainly not large enough to overcome the lattice enthalpy, and so dissolution does not occur. 2