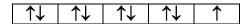
CHEM1002 2004-N-2 November 2004

• Explain in terms of their electronic configurations and trends in ionisation energies across a period why the alkali metals (Group 1) are powerful *reducing* agents.

Marks 2

Ionisation energies increase across a period in the periodic table because the increasing nuclear charge holds the electrons more tightly. Hence, in any period, the Group 1 element is the one that most easily loses its electron (from the *s* subshell).


This electron is then available to reduce another species.

• Compounds of d-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Cu^{2+} .

2

 Cu^{2+} has the electron configuration of $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$ (or [Ar] $3d^9$).

Hence as it has an odd number of electrons, the Cu^{2+} ion has an unpaired electron and must therefore be paramagnetic. The nine electrons occupy the 3d orbitals with the arrangement:

• Complete the following table.

6

Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> -electrons in metal in complex ion	Species formed upon dissolving in water
K ₂ [Ni(CN) ₄]	II	4	8	K ⁺ (aq), [Ni(CN) ₄] ²⁻ (aq)
[Cr(NH ₃) ₅ Cl]Cl ₂	Ш	6	3	[Cr(NH ₃) ₅ Cl] ²⁺ (aq), Cl ⁻ (aq)
[Co(en) ₃]Br ₃	III	6	6	[Co(en)3]3+(aq), Br-(aq)

en = ethylenediamine = $NH_2CH_2CH_2NH_2$