Marks • What are allotropes? Give an example of a pair of allotropes involving carbon and a 3 second example of a pair not involving carbon. Allotropes are different molecular forms of the same element. Examples include graphite, diamond and buckminsterfullerene for carbon, white and red phosphorus and O₂ and O₃ for oxygen. 4 The following data were obtained for the reaction between gaseous nitric oxide and chlorine at 1400 K. $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$ INITIAL REACTION RATE **EXPERIMENT** INITIAL [NO] INITIAL [Cl₂] $(mol L^{-1} s^{-1})$ NUMBER $(mol L^{-1})$ $(mol L^{-1})$ 0.10 0.10 0.18 1 0.10 0.20 0.36 2 0.20 0.10 0.72 3 Deduce the rate law for this reaction and calculate the value of the rate constant. RATE LAW RATE CONSTANT From experiment 1 and the rate law, In experiments 1 and 2, [NO] is kept constant. Doubling [Cl₂] doubles the rate = $k[NO]^2[Cl_2]$ rate so the reaction is first order with $k = \frac{\text{rate}}{\left[\text{NO}\right]^2 \left[\text{Cl}_2\right]} =$ respect to [Cl₂]. In experiments 1 and 3, [Cl₂] is kept constant. Doubling [NO] leads to the $=\frac{(0.18 \operatorname{mol} \operatorname{L}^{-1} \operatorname{s}^{-1})}{(0.10 \operatorname{mol} \operatorname{L}^{-1})^2 (0.10 \operatorname{mol} \operatorname{L}^{-1})}$ rate increasing by a factor of four so the reaction is second order with respect to [NO]. $k = 180 \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$ **Therefore:** The units can be deduced from the rate α [NO]²[Cl₂] rate law and the units of the rate (mol rate = $k[NO]^2[Cl_2]$ L^{-1} s⁻¹) and the concentrations (mol L^{-1}):

units of
$$k = \frac{\text{mol } \text{L}^{-1} \text{ s}^{-1}}{(\text{mol } \text{L}^{-1})^2 (\text{mol } \text{L}^{-1})}$$

units of k are mol⁻² L² s⁻¹

Answer: rate = $k[NO]^2[Cl_2]$

Answer: $k = 180 \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$