• Solution A consists of a 0.15 M aqueous solution of nitrous acid (HNO₂) at 25 °C. Calculate the pH of Solution A. The pK_a of HNO₂ is 3.15.

Marks 8

Nitrous acid is a weak acid so [H ₃ O ⁺] must be	e calculated:
---	---------------

	HNO ₂	H ₂ O	 H ₃ O ⁺	NO ₂ ⁻
initial	0.15	large	0	0
change	- <i>x</i>	negligible	+ <i>x</i>	+ <i>x</i>
final	0.15 - x	large	x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_{3}{\rm O}^{+}][{\rm NO}_{2}^{-}]}{[{\rm HNO}_{2}]} = \frac{x^{2}}{0.15 - x}$$

As $K_a = 10^{-3.15}$ is very small, $0.15 - x \sim 0.15$ and hence:

$$x^2 = 0.15 \times 10^{-3.15}$$
 or $x = 1.03 \times 10^{-2} \text{ M} = [\text{H}_3\text{O}^+]$

Hence, the pH is given by:

$$pH = -\log_{10}[H_3O^+(aq)] = -\log_{10}[(1.03 \times 10^{-2})] = 1.99$$

pH = **1.99**

ANSWER CONTINUES ON THE NEXT PAGE

At 25 °C, 1.00 L of Solution B consists of 13.8 g of sodium nitrite (NaNO₂) dissolved in water. Calculate the pH of Solution B.

The formula mass of NaNO₂ is (22.99 (Na) + 14.01 (N) + 2×16.00 (O)) = 69. Therefore, 13.8 g corresponds to:

number of moles of NaNO₂ = $\frac{\text{mass}}{\text{formula mass}} = \frac{13.8}{69.0} = 0.200 \text{ mol}$

As this is dissolved in 1.00 L, the concentration is 0.200 M.

NO₂⁻ is a weak base so [OH⁻(aq)] must be calculated from the equilibrium:

	NO ₂ ⁻	H ₂ O	 OH-	HNO ₂
initial	0.200	large	0	0
change	-y	negligible	+ <i>y</i>	+ <i>y</i>
final	0.200 - y	large	у	у

The equilibrium constant *K*_b is given by:

$$K_{a} = \frac{[OH^{-}][HNO_{2}]}{[NO_{2}^{-}]} = \frac{y^{2}}{0.2 - y}$$

For an acid and its conjugate base, $pK_a + pK_b = 14.00$ so:

 $pK_b = 14.00 - 3.15 = 10.85$

As $pK_b = 10.85$, $K_b = 10^{-10.85}$. K_b is very small so $0.200 - y \sim 0.200$ and hence:

 $y^2 = 0.200 \times 10^{-10.85}$ or $y = 1.68 \times 10^{-6} \text{ M} = [\text{OH-(aq)}]$

Hence, the pOH is given by $pOH = -\log_{10}[OH(aq)] = -\log_{10}[1.68 \times 10^{-6}] = 5.77$

Finally, pH + pOH = 14 so pH = (14.00 - 5.77) = 8.23

pH = 8.23

ANSWER CONTINUES ON THE NEXT PAGE

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 °C. Calculate the pH of the final solution.

Solution A, $HNO_2(aq)$, is 0.15 M. When 1.00 L of A is added to 1.00 L of B, a 2.00 L solution is formed. This dilution halves the concentration to 0.075 M. Similarly, solution B, $KNO_2(aq)$, which is initially 0.200 M is diluted to 0.100 M by the addition of solution A.

The combined solution contains a mixture of a weak acid (HNO_2) and its conjugate base (NO_2) so acts as a buffer and the Henderson-Hasselbalch equation can be used:

pH = p
$$K_a$$
 + log₁₀ $\left(\frac{[base]}{[acid]}\right)$ with [base] = [NO₂(aq)] and [acid] = [HNO₂(aq)].

As p*K*_a for HNO₂ = 3.15, [NO₂⁻(aq)] = 1.00 M and [HNO₂(aq)] = 0.075 M:

$$pH = 3.15 + \log_{10} \left(\frac{[0.100]}{[0.075]} \right) = 3.27$$

pH = **3.27**

If you wanted to adjust the pH of the mixture of Solution A and Solution B to be exactly equal to 3.00, which component in the mixture would you need to increase in concentration?

acid (HNO₂)