• Briefly describe two factors that determine whether a collision between two molecules will lead to a chemical reaction.	Ma (
Molecules must collide with sufficient energy to overcome the activation energy of reaction.	
Molecules must be oriented correctly for reaction to occur.	
Briefly describe the relationship between the rate of a reaction and the activation energy for the reaction.	
Experimentally, the rate constant for a reaction is related to the temperature through the Arrhenius equation:	
$k = A e^{-E_a/RT}$	
where E_a is the activation energy and A is the pre-exponential or just " A " factor.	
Higher activation energy results in slower reaction rates.	
The rate constant for the decomposition of N_2O_5 increases from $1.50 \times 10^{-5} \text{ s}^{-1}$ at 27 °C to $3.80 \times 10^{-3} \text{ s}^{-1}$ at 57 °C. Calculate the activation energy for the reaction.	
The rate constants at two different temperatures are related through th Arrhenius equation:	e
$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	
Thus,	
$\ln\left(\frac{3.80 \times 10^{-3} \text{ s}^{-1}}{1.52 \times 10^{-5} \text{ s}^{-1}}\right) = \frac{\text{E}_{a}}{(8.314 \text{ J K}^{-1} \text{ mol}^{-1})} \left(\frac{1}{(27+273) \text{ K}} - \frac{1}{(57+273) \text{ K}}\right)$	
$E_{\rm a} = 151000 \text{ J mol}^{-1} = 151 \text{ kJ mol}^{-1}$.	
	_
Answer: 151 kJ mol ⁻¹	