• What is the pH of a 0.010 M solution of Ca(OH)₂?

Ca(OH)₂ is a strong base and dissociates completely according to the equation:

 $Ca(OH)_2(aq) \rightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$

A 0.010 M solution therefore has [OH⁻(aq)] = 0.020 M and

$$pOH = -log_{10}([OH^{-}(aq)]) = -log_{10}(0.020) = 1.70$$

pH = **12.30**

• What is the pH of a 0.010 M solution of HNO_2 ? The p K_a of HNO_2 is 3.15.

2

Marks

2

Nitrous acid is a weak acid so [H₃O⁺] must again be calculated:

	HNO ₂ (aq)	H ₂ O(l)	-	H ₃ O ⁺ (aq)	$NO_2^{-}(aq)$
initial	0.010	large		0	0
change	- <i>x</i>	negligible		+x	+x
final	0.010 - x	large		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_{3}{\rm O}^{+}][{\rm NO}_{2}^{-}]}{[{\rm HNO}_{2}]} = \frac{x^{2}}{0.010 - x}$$

As $K_a = 10^{-3.15}$ is very small, $0.010 - x \sim 0.010$ and hence:

$$x^2 = 0.010 \times 10^{-3.15}$$
 or $x = 2.66 \times 10^{-3} \text{ M} = [\text{H}_3\text{O}^+(\text{aq})]$

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+(aq)] = -log_{10}[(2.66 \times 10^{-3})] = 2.58$$

pH = 2.58

ANSWER CONTINUES ON THE NEXT PAGE

• What is the pH of a solution that is 0.020 M in CH₃COOH and 0.010 M in CH₃CO₂^{-?} The K_a of CH₃COOH is 1.8×10^{-5} M.

The solution contains a mixture of a weak acid (CH₃COOH) and its conjugate base (CH₃COO⁻) so acts as a buffer and the Henderson-Hasselbalch equation can be used:

$$\mathbf{pH} = \mathbf{pK}_{a} + \log_{10}\left(\frac{[\text{base}]}{[\text{acid}]}\right)$$

with $[base] = [CH_3COO^{-}(aq)]$ and $[acid] = [CH_3COOH(aq)]$.

As
$$K_a = 1.8 \times 10^{-5}$$
, $pK_a = -\log_{10}K_a = -\log_{10}(1.8 \times 10^{-5}) = 4.74$.

Hence:

$$\mathbf{pH} = 4.74 + \log_{10} \left(\frac{[0.010]}{[0.020]} \right) = 4.44$$

pH = 4.44