• What is the pH of a 0.020 M solution of HF? The pK_a of HF is 3.17.

Marks 2

	HF	H ₂ O	+	H_3O^+	\mathbf{F}^{-}
initial	0.020	large		0	0
change	-X	negligible		+ x	+ x
final	0.020 - x	large		X	X

The equilibrium constant K_a is given by:

$$\mathbf{K}_{a} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{F}^{-}]}{[\mathbf{H}\mathbf{F}]} = \frac{\mathbf{x}^{2}}{0.020 - \mathbf{x}}$$

As $pK_a = -\log_{10}(K_a)$, $K_a = 10^{-3.17}$ and is very small. Hence, $0.020 - x \sim 0.020$ and hence:

 $x^2 = 0.020 \times 10^{-3.17}$ or $x = 3.68 \times 10^{-3} M = [H_3O^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}[(3.68 \times 10^{-3})] = 2.43$$

pH = **2.43**

• What is the pH of a solution that is 0.075 M in acetic acid and 0.150 M in sodium acetate? The pK_a of CH₃COOH is 4.76.

This solution containing a weak acid (CH₃COOH) and its conjugate base (CH₃COO⁻) is a buffer and the Henderson-Hasselbalch equation can be used to calculate the pH:

$$pH = pK_a + \log_{10}\left(\frac{[base]}{[acid]}\right) = pK_a(CH_3COOH) + \log_{10}\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right)$$

$$\mathbf{pH} = 4.76 + \log_{10} \left(\frac{0.150}{0.075} \right) = 5.06$$

pH = **5.06**

THE ANSWER CONTINUES ON THE NEXT PAGE

2

2

• What is the pH of a 0.010 M solution of Ba(OH)₂?

Ba(OH)₂ is a strong base and dissociates completely according to the equation:

 $Ba(OH)_2(aq) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$

Hence a 0.010 M solution has [OH⁻(aq)] = 2 × 0.010 = 0.020 M.

As $pOH = -log_{10}([OH^{-}(aq)], pOH = -log_{10}(0.020) = 1.70.$

In aqueous solution, pH + pOH = 14.00 so pH = (14.00 - 1.70) = 12.30

pH = 12.30