Marks • The following data were obtained for the reaction between gaseous nitric oxide and 4 hydrogen at 1280 °C. $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ INITIAL REACTION RATE Experiment INITIAL [NO] INITIAL [H₂] $(M \min^{-1})$ number (M) (M) 5.0×10^{-3} 2.0×10^{-3} 1.3×10^{-5} 1 2.0×10^{-3} 1.0×10^{-2} 5.0×10^{-5} 2 1.0×10^{-2} 4.0×10^{-3} $1.0 imes 10^{-4}$ 3 Deduce the rate law for this reaction and calculate the value of the rate constant. RATE LAW RATE CONSTANT Between experiments 1 and 2, [H₂] is Using experiment 1, constant and [NO] is doubled. The rate increases by a factor of four. The

reaction is second order with respect to
NO.rate = $k[NO]^2[H_2]$ Between experiments 2 and 3, [NO] is
constant and [H_2] is doubled. The rate
increases by a factor of two. The
reaction is first order with respect to H_2. $k = 260 \text{ M}^{-2} \min^{-1}$ The units of k can be deduced from
balancing those of the other terms:
M min⁻¹ = (units of k) × (M)^2 × (M)Answer: rate = $k[NO]^2[H_2]$ Answer: 260 M⁻² min⁻¹

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.