• Solution A consists of a 0.50 M aqueous solution of HF at 25 °C. Calculate the pH of Solution A. The pK_a of HF is 3.17.

Marks 8

As HF is a weak acid, $[H_3O^+]$ must be calculated using a reaction table:

	HF	H ₂ O	~`	H_3O^+	HF
initial	0.50	large		0	0
change	-X	negligible		+ x	+ x
final	0.50 –x	large		X	X

The equilibrium constant K_a is given by:

$$K_a = \frac{[H_3O^+][F^-]}{[HF]} = \frac{x^2}{0.50 - x}$$

As $pK_a = -\log_{10}K_a$, $K_a = 10^{-3.17}$ and is very small, $0.50 - x \sim 0.50$ and hence:

$$x^{2} = 0.50 \times 10^{-3.17}$$
 or $x = 1.84 \times 10^{-2} M = [H_{3}O^{+}]$

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}[(1.84 \times 10^{-2})] = 1.74$$

pH = **1.74**

ANSWER CONTINUES ON THE NEXT PAGE

2007-N-4

At 25 °C, 1.00 L of Solution B consists of 12.97 g of lithium fluoride, LiF, dissolved in water. Calculate the pH of Solution B.

The molar mass of LiF is 6.941 (Li) + 19.00 (F) = 25.941. Hence, the number of moles in 12.97 g is:

number of moles = $\frac{\text{mass}}{\text{molar mass}} = \frac{12.97}{25.941} = 0.5000 \text{ mol}$

As this is dissolved in 1.00 L, [F] = 0.500 M.

 $F^{\ }$ is a weak base so $[H_{3}O^{+}]$ must be calculated via the calculation of $[OH^{\ }]$ from the reaction table:

	F ⁻	H ₂ O	~`	HF	OH ⁻
initial	0.500	large		0	0
change	-X	negligible		+ X	+ x
final	0.500 - x	large		X	X

The equilibrium constant K_b is given by:

$$\mathbf{K}_{b} = \frac{[\mathbf{HF}][\mathbf{OH}^{-}]}{[\mathbf{F}^{-}]} = \frac{\mathbf{x}^{2}}{\mathbf{0.500} - \mathbf{x}}$$

As $pK_a + pK_b = 14.00$, $pK_b = 14.00 - 3.17 = 10..83$. As $pK_b = -\log_{10}K_b$, $K_b = 10^{-10.83}$ and is very small. Hence, $0.500 - x \sim 0.500$ and hence:

 $x^2 = 0.500 \times 10^{-10.83}$ or $x = 2.72 \times 10^{-6} M = [OH^-]$

Hence, the pOH is given by:

 $pOH = -log_{10}[OH^{-}] = -log_{10}[(2.72 \times 10^{-6})] = 5.57$

Finally, as pH + pOH = 14.00, pH = 14.00 - 5.57 = 8.43

pH = 8.43

ANSWER CONTINUES ON THE NEXT PAGE

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 °C. Calculate the pH of the final solution.

The solution consists of a weak acid (HF) and its conjugate base (F). The Henderson -Hasselbalch equation can be used:

$$\mathbf{pH} = \mathbf{pK}_{a} + \log_{10} \left(\frac{[\text{base}]}{[\text{acid}]} \right)$$

[base] = [F⁻] = 0.500 M and [acid] = [HF] = 0.50 M. Hence,

$$pH = pK_a + \log_{10}\left(\frac{[base]}{[acid]}\right) = 3.17 + \log_{10}\left(\frac{0.500}{0.50}\right) = 3.17$$

pH = **3.17**

If you wanted to adjust the pH of the mixture of Solution A and Solution B to be exactly equal to 4.00, which component in the mixture would you need to increase in concentration? pH needs to increase: increase [base] (i.e. [LiF])