
• Compounds of *d*-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Ni^{2+} .

The Ni atom has the electron configuration [Ar] $4s^23d^8$ and the Ni²⁺ ion has the configuration [Ar] $3d^8$ as the two electrons are removed from the 4s orbitals.

The electrons in the d-orbitals are arranged to minimize the repulsion between them. This results in two of the electrons being unpaired.

The presence of unpaired electrons leads to paramagnetism.

• Complete the following table.

Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> -electrons in the complex ion	Species formed upon dissolving in water
K ₃ [Mn(CN) ₆]	III	6	4	K ⁺ (aq) [Mn(CN) ₆] ³⁻ (aq)
[Ru(NH ₃) ₅ (OH ₂)](NO ₃) ₂	П	6	6	[Ru(NH ₃) ₅ (OH ₂)] ²⁺ (aq) NO ₃ (aq)
[Cr(en) ₃]Cl ₃	III	6	3	[Cr(en) ₃] ³⁺ (aq) Cl ⁻ (aq)

 $en = ethylenediamine = NH_2CH_2CH_2NH_2$

6