- Calculate the pH of a 0.020 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$.
$\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base so it will completely dissociate in solution:

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

As each $\mathrm{Ba}(\mathrm{OH})_{2}$ dissociates to make $2 \mathrm{OH}^{-}$, a 0.020 M solution has $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=$ 0.040 M.

By definition, $\mathbf{p O H}=-\log _{10}\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ so $\mathrm{pOH}=-\log _{10}(0.040)=1.40$.
As $\mathbf{p H}+\mathbf{p O H}=14.00$,

$$
\mathrm{pH}=14.00-1.40=12.60
$$

$$
\mathrm{pH}=\mathbf{1 2 . 6 0}
$$

- Calculate the pH of a 0.150 M solution of HNO_{2}. The $\mathrm{p} K_{\mathrm{a}}$ of HNO_{2} is 3.15 .

As HNO_{2} is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated using a reaction table:

	HNO_{2}	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{NO}_{2}{ }^{-}$
initial	0.150	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.150-x$	large		x	x

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{x^{2}}{0.150-x}
$$

As $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}, K_{\mathrm{a}}=10^{-3.15}$ and is very small, $0.150-x \sim 0.150$ and hence:

$$
x^{2}=0.150 \times 10^{-3.15} \text { or } x=1.03 \times 10^{-2} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left(1.03 \times 10^{-2}\right)=1.987
$$

$$
\mathrm{pH}=1.987
$$

ANSWER CONTINUES ON THE NEXT PAGE

- Calculate the pH of a solution that is 0.080 M in acetic acid and 0.160 M in sodium acetate. The pKa of acetic acid is 4.76 .

The solution contains both a weak acid (acetic acid) and its conjugate base (the acetate ion). This is a buffer and its $\mathbf{p H}$ can be calculate using the HendersonHasselbalch equation. With [acid] $=0.080 \mathrm{M}$ and $[$ base $]=0.160 \mathrm{M}$,

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)=4.76+\log \left(\frac{0.160}{0.080}\right)=5.06
$$

$$
\mathrm{pH}=5.06
$$

