• Calculate the pH of a 0.020 M solution of Ba(OH)₂.

Ba(OH)₂ is a strong base so it will completely dissociate in solution:

 $Ba(OH)_2(s) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$

As each Ba(OH)₂ dissociates to make 2OH⁻, a 0.020 M solution has [OH⁻(aq)] = 0.040 M.

By definition, $pOH = -log_{10}[OH^{-}(aq)]$ so $pOH = -log_{10}(0.040) = 1.40$.

As pH + pOH = 14.00,

pH = 14.00 - 1.40 = 12.60

pH = **12.60**

• Calculate the pH of a 0.150 M solution of HNO_2 . The p K_a of HNO_2 is 3.15.

3

Marks

1

As HNO_2 is a weak acid, $[H_3O^+]$ must be calculated using a reaction table:

	HNO ₂	H ₂ O	 H_3O^+	NO ₂ ⁻
initial	0.150	large	0	0
change	- <i>x</i>	negligible	+x	+x
final	0.150 <i>-x</i>	large	x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm NO}_2^-]}{[{\rm H}{\rm NO}_2]} = \frac{x^2}{0.150 - x}$$

As $pK_a = -\log_{10}K_a$, $K_a = 10^{-3.15}$ and is very small, $0.150 - x \sim 0.150$ and hence:

$$x^2 = 0.150 \times 10^{-3.15}$$
 or $x = 1.03 \times 10^{-2} \text{ M} = [\text{H}_3\text{O}^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}(1.03 \times 10^{-2}) = 1.987$$

pH = **1.987**

ANSWER CONTINUES ON THE NEXT PAGE

• Calculate the pH of a solution that is 0.080 M in acetic acid and 0.160 M in sodium acetate. The pKa of acetic acid is 4.76.

The solution contains both a weak acid (acetic acid) and its conjugate base (the acetate ion). This is a buffer and its pH can be calculate using the Henderson-Hasselbalch equation. With [acid] = 0.080 M and [base] = 0.160 M,

pH = pK_a + log
$$\left(\frac{[base]}{[acid]}\right)$$
 = 4.76 + log $\left(\frac{0.160}{0.080}\right)$ = 5.06

pH = **5.06**