2008-N-6

The formula mass of BaSO₄ is:

137.34 (Ba) + 32.07 (S) + 4 × 16.00 (O) = 233.44 g mol⁻¹

A mass of 1.2×10^{-3} g therefore corresponds to:

number of moles = $\frac{\text{mass}}{\text{formula mass}} = \frac{1.2 \times 10^{-3} \text{ g}}{233.44 \text{ g mol}^{-1}} = 5.14 \times 10^{-6} \text{ mol}$

The equation for the dissolution is:

 $BaSO_4(s) \implies Ba^{2+}(aq) + SO_4^{2-}(aq)$

If 5.14×10^{-6} mol dissolves, then the number of moles of $Ba^{2+}(aq)$ and $SO_4^{2-}(aq)$ will also be 5.14×10^{-6} mol. As these amounts are present in 500 mL of water:

$$[Ba^{2+}(aq)] = [SO_4^{2-}(aq)] = \frac{\text{number of moles}}{\text{volume}} = \frac{5.14 \times 10^{-6} \text{ mol}}{0.500 \text{ L}} = 1.03 \times 10^{-5} \text{ M}$$

Answer: 1.1×10^{-10}

Finally, the solubility product constant is:

$$K_{\rm sp} = [{\rm Ba}^{2+}({\rm aq})][{\rm SO}_4^{-2-}({\rm aq})] = (1.03 \times 10^{-5})(1.03 \times 10^{-5}) = 1.1 \times 10^{-10}$$

 Ba^{2+} ions are toxic. Comment on the suitability of $BaSO_4$ as a contrast agent.

As BaSO₄ has a very low solubility, $[Ba^{2+}(aq)]$ will be low and so very few of the toxic Ba^{2+} are actually dissolved into the blood stream.

What advantage would there be in administering BaSO₄ as a slurry which also contains 0.5 M Na₂SO₄?

The equilibrium,

BaSO₄(s) \implies **Ba**²⁺(aq) + **SO**₄²⁻(aq)

will be shifted to the left by the addition of additional SO_4^{2-} from Na₂SO₄. This is an example of Le Châtelier's principle and is called the 'common ion effect'.

By shifting the reaction to the left, even less $BaSO_4$ will dissolve, reducing $[Ba^{2+}(aq)]$ to:

 $[\text{Ba}^{2+}(\text{aq})] = K_{\text{sp}} / [\text{SO}_4^{-2-}(\text{aq})] = (1.1 \times 10^{-11})/(0.5) = 2 \times 10^{-10} \text{ M}$

This can be compared to the much higher value of 1×10^{-5} M calculated above.

4