Marks • Iron forms three common oxides, FeO, Fe_3O_4 and Fe_2O_3 . The unit cell for one of 8 these oxides is shown below. 0 Fe Explain which oxide the structure represents and describe the nature of the packing of the ions and their coordination numbers. The structure contains 1 Fe atom at the centre and 12 Fe atoms on the edges. The atoms on the edges are shared between 4 cells and so contribute 1/4 to each: number of Fe atoms = 1 (centre) + $12 \times 1/4$ (edges) = 4 The structure contains 8 O atoms on the corners and 6 O atoms on the faces. The atoms on the corners are shared between 8 cells and so contribute 1/8 to each and the atoms on the faces are shared between 2 cells and so contribute 1/2 to each: number of O atoms = $8 \times 1/8$ (corners) + $6 \times 1/2 = 4$ There are 4 Fe atoms and 4 O atoms in the unit cell: the stoichimetry is Fe₄O₄ or FeO. The coordination number is 6 for both Fe and O. The structure can be described as the cubic close packed arrangement of O atoms, with Fe in all of the octahedral holes. The mineral magnetite, Fe_3O_4 , is found in the beaks of homing pigeons. It contains a mixture of Fe^{2+} and Fe^{3+} ions. What is the ratio of Fe^{2+} to Fe^{3+} in Fe_3O_4 ? As each O has an oxidation number of -2 and there are 4 of them in the formula, the 3 Fe atoms must together have a charge of +8. This is consistent with their being two Fe³⁺ ions and one Fe²⁺ per formula unit. The ratio of Fe^{3+} to Fe^{2+} is 2 to 1.

ANSWER CONTINUES ON THE NEXT PAGE

How many unpaired electrons are there in an Fe^{2+} ion and in an Fe^{3+} ion? Explain your answer using the box notation.

Fe is in Group 8 so Fe^{2+} has a d^6 configuration and Fe^{3+} has a d^5 configuration. These electrons arrange in the five *d*-orbitals to minimise the repulsion between them by maximising the number of unpaired electrons:

