Marks 5

• Nickel metal can be extracted and recycled from mobile phone batteries. This process leads to solutions containing both $\text{Cu}^{2+}(\text{aq})$ and $\text{Ni}^{2+}(\text{aq})$ ions. Separation of these ions is achieved by adding tiny amounts of sulfide ions as the metal sulfides have low and very different solubilities: $K_{\text{sp}}(\text{CuS}) = 8 \times 10^{-34}$ and $K_{\text{sp}}(\text{NiS}) = 3 \times 10^{-19}$.

An aqueous solution has $[Ni^{2+}(aq)] = 0.0100$ M and an unknown concentration of $Cu^{2+}(aq)$ ions. $S^{2-}(aq)$ ions are added in small increments. CuS begins to precipitate when $[S^{2-}(aq)] = 8 \times 10^{-32}$ M. What was the original value of $[Cu^{2+}(aq)]$?

The solubility of CuS is *much* lower than NiS as its $K_{\rm sp}$ value is *much* smaller. When CuS begins to precipitate, virtually none will be left in solution.

CuS(s) dissolves to give $Cu^{2+}(aq)$ and $S^{2-}(aq)$, so $K_{sp}(CuS) = [Cu^{2+}(aq)][S^{2-}(aq)]$.

As $K_{\rm sp}=8\times10^{-34}$ and precipitation occurs when $[{\rm S}^{2\text{-}}({\rm aq})]=8\times10^{-32}\,{\rm M},$

$$[Cu^{2+}(aq)] = K_{sp}(CuS) / [S^{2-}(aq)] = (8 \times 10^{-34}) / (8 \times 10^{-32}) = 0.01 \text{ M}$$

Answer: **0.01 M**

At what [S²⁻(aq)] will NiS precipitate?

NiS(s) dissolves to give Ni²⁺(aq) and S²⁻(aq), so K_{sp} (NiS) = [Ni²⁺(aq)][S²⁻(aq)].

As $K_{sp} = 3 \times 10^{-19}$ and $[Ni^{2+}(aq)] = 0.0100$ M,

 $[S^{2-}(aq)] = K_{sp}(NiS) / [Ni^{2-}(aq)] = (3 \times 10^{-19}) / (0.0100) = 3 \times 10^{-17} M$

Answer: 3×10^{-17} M

If the CuS formed is filtered off before any NiS precipitates, how pure will the NiS precipitate be?

From above, NiS precipitates when $[S^{2-}(aq)] = 3 \times 10^{-17} M$. At this concentration,

$$[Cu^{2+}(aq)] = K_{sp}(CuS) / [S^{2-}(aq)] = (8 \times 10^{-34}) / (3 \times 10^{-17}) = 3 \times 10^{-17} M$$

When NiS starts to precipitate, [Ni^2+(aq)] = 0.0100 M and [Cu^2+(aq)] = 3×10^{-17} M.

The NiS that precipitates will contain very little Cu²⁺: it will be very pure.

Answer: 100%