- The structure of common aspirin, acetylsalicylic acid, is shown below. It has a $\mathrm{p} K_{\mathrm{a}}$ value of 3.5.

Calculate the pH of a solution in which one normal adult dose $(0.65 \mathrm{~g})$ is dissolved in 250 mL of water.

The chemical formula of acetylsalicylic acid is $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. It has a molar mass of $(9 \times 12.01(\mathrm{C})+8 \times 1.008(\mathrm{H})+4 \times 16.00(\mathrm{O})) \mathrm{g} \mathrm{mol}^{-1}=180.154 \mathrm{~g} \mathrm{~mol}^{-1}$.

The number of moles present corresponds to:

$$
\begin{aligned}
\text { number of moles } & =\text { mass } / \text { molar mass } \\
& =(0.65 \mathrm{~g}) /\left(180.154 \mathrm{~g} \mathrm{~mol}^{-1}\right)=0.00361 \mathrm{~mol}
\end{aligned}
$$

The concentration when this amount is dissolved in $\mathbf{2 5 0} \mathbf{~ m L}$ of water is therefore:

$$
\begin{aligned}
\text { [aspirin] } & =\text { number of moles / volume } \\
& =(0.00361 \mathrm{~mol}) /(0.25 \mathrm{~L})=0.0144 \mathrm{M}
\end{aligned}
$$

As aspirin is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated using a reaction table:

	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{-}$
initial	0.0144	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.144-x$	large		x	x

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}\right]}{\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right]}=\frac{x^{2}}{0.0144-x}
$$

As $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}, K_{\mathrm{a}}=10^{-3.5}$ and is very small, $0.0144-x \sim 0.0144$ and hence:

$$
x^{2}=0.0144 \times 10^{-3.5} \quad \text { or } \quad x=2.1 \times 10^{-3} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hence, the pH is given by:

$$
\mathbf{p H}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left(2.1 \times 10^{-3}\right)=2.7
$$

If blood has a pH of 7.4, what percentage of aspirin is present in the deprotonated form in a solution consisting of one normal adult dose in 250 mL of blood?

Using the Henderson - Hasselbalch equation,

$$
\mathbf{p H}=\mathbf{p} K_{\mathbf{a}}+\log \frac{[\text { base }]}{[\text { acid }]}
$$

At a pH of 7.4

$$
7.4=3.5+\log \frac{[\text { base }]}{[\text { acid }]} \quad \text { so } \quad \frac{[\text { base }]}{[\text { acid }]}=10^{3.9}=7900
$$

The deprotonated, conjugate base form completely dominates at this $\mathbf{p H}$.

Answer: 100\% base

Solutions of aspirin are unstable due to hydrolysis. If 0.26 g of a normal adult dose remains after 4 hours, what is the half-life of aspirin?

The number of moles present after 4 hours corresponds to:

$$
\begin{aligned}
\text { number of moles } & =\text { mass } / \text { molar mass } \\
& =(0.26 \mathrm{~g}) /\left(180.154 \mathrm{~g} \mathrm{~mol}^{-1}\right)=0.00144 \mathrm{~mol}
\end{aligned}
$$

The concentration when this amount is dissolved in 250 mL of water is therefore:

$$
\begin{aligned}
\text { [aspirin] } & =\text { number of moles } / \text { volume } \\
& =(0.00144 \mathrm{~mol}) /(0.25 \mathrm{~L})=0.00577 \mathrm{M}
\end{aligned}
$$

The amount present after time t is related to the amount initially present through the equation:

$$
\ln [A]=\ln [A]_{0}-k t
$$

From above, $[A]_{0}=0.0144 \mathrm{M}$. As $[A]=0.00577 \mathrm{M}$ with $t=4$ hours:

$$
\ln (0.00577)=\ln (0.0144)-k \times 4
$$

$$
k=0.23
$$

Finally, the half life, $\boldsymbol{t}_{1 / 2}$, is given by
$t_{1 / 2}=\ln 2 / k=3$ hours

