Marks 6

As benzoic acid is a weak acid, [H₃O⁺] must be calculated using a reaction table:

	C ₆ H ₅ COOH	-	\mathbf{H}^{+}	C ₆ H ₅ COO
initial	0.050		0	0
change	-x		+x	+x
final	0.050 -x		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm C}_6{\rm H}_5{\rm COO}^-]}{[{\rm C}_6{\rm H}_5{\rm COOH}]} = \frac{x^2}{0.050 - x}$$

As p $K_a = -\log_{10}K_a$, $K_a = 10^{-4.20}$ and is very small, $0.050 - x \sim 0.050$ and hence:

$$x^2 = 0.050 \times 10^{-4.2}$$
 or $x = 1.78 \times 10^{-3} \text{ M} = [\text{H}^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H^{+}] = -log_{10}(1.78 \times 10^{-3}) = 2.75$$

$$pH = 2.75$$

What are the major species present in solution A?

 $K_{\rm a}$ is very small and the equilibrium lies almost completely to the left. The major species present are water and the undissociated acid:

H₂O and C₆H₅COOH

Solution B consists of a 0.050 M aqueous solution of ammonia, NH₃, at 25 °C. Calculate the pH of Solution B. The p K_a of NH₄⁺ is 9.24.

NH₃ is a weak base so [OH⁻] must be calculated by considering the equilibrium:

	NH ₃	H ₂ O	1	NH ₄ ⁺	OH-
initial	0.050	large		0	0
change	-y	negligible		+ <i>y</i>	+ <i>y</i>
final	0.050 - y	large		y	у

CHEM1002 2012-N-2 November 2012

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[{\rm NH_4}^+][{\rm OH}^-]}{[{\rm NH_3}]} = \frac{y^2}{(0.050 - y)}$$

For an acid and its conjugate base:

$$pK_a + pK_b = 14.00$$

$$pK_b = 14.00 - 9.24 = 4.76$$

As $pK_b = 4.76$, $K_b = 10^{-4.76}$. K_b is very small so $0.050 - y \sim 0.050$ and hence:

$$y^2 = 0.050 \times 10^{-4.76}$$
 or $y = 9.32 \times 10^{-4}$ M = [OH⁻]

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = log_{10}[9.32 \times 10^{-4}] = 3.03$$

Finally, pH + pOH = 14.00 so

$$pH = 14.00 - 3.03 = 10.97$$

$$pH = 10.97$$

What are the major species present in solution B?

 $K_{\rm b}$ is very small and the equilibrium lies almost completely to the left. The major species present are water and the unprotonated weak base:

H₂O and NH₃