What is the molar solubility of magnesium hydroxide in a buffer solution at pH 9.24? $\begin{bmatrix} Marks \\ 3 \end{bmatrix}$

At pH 9.24, pOH = 14.00 - 9.24 = 4.76 [OH⁻(aq)] = $10^{-pOH} = 10^{-4.76}$ M From 2012-N-6, $K_{sp} = [Mg^{2+}(aq)][OH⁻(aq)]^2$ so [Mg²⁺(aq)] = K_{sp} / [OH⁻(aq)]² = 7.1 × 10^{-12} / $(10^{-4.76})^2$ = 0.024 M

Answer: 0.024 M

Do the relative solubilities of magnesium hydroxide in water and the buffer solution support the concept of the common ion effect? Explain your reasoning.

Yes. The $[OH^{-}(aq)]$ in the saturated Mg $(OH)_2$ solution is 2.4 × 10⁻⁴ M, higher than the $[OH^{-}(aq)]$ in the buffer solution which remains constant at 10^{-4.76} M, *i.e.* 1.7 × 10⁻⁵ M.

Normally the solubility of a solid decreases because of a high concentration of one of its ions. In this situation, the opposite is observed. Regardless of how much $Mg(OH)_2$ dissolves, the $[OH^-]$ remains below that seen in a saturated solution of $Mg(OH)_2$. Therefore the solubility of $Mg(OH)_2$ increases in this particular buffer.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.