• The structure below represents the active site in carbonic anhydrase, which features a Zn²⁺ ion bonded to three histidine residues and a water molecule.

Marks 5

$$\begin{array}{c|c}
R & & & & & & \\
& & & & & & \\
N & & & & & \\
R & & & & & \\
\end{array}$$

The p K_a of uncoordinated water is 15.7 but the p K_a of the water in carbonic anhydrase is around 7. Suggest an explanation for this large change.

The high charge on the ${\rm Zn}^{2^+}$ ion draws electron density out of the O–H bonds in the water molecule. This weakens the O–H so the ${\rm H}^+$ is more likely to leave.

The water in carbonic anhydrase is therefore more acidic, as shown by the large decrease in pK_a .

When studying zinc-containing metalloenzymes such as this, chemists often replace Zn²⁺ with Co²⁺ because of their different magnetic properties. Predict which of these species, if either, is attracted by a magnetic field. Explain your reasoning.

$$Zn^{2+}$$
, $3d^{10}$
 Co^{2+} , $3d^7$

↑↓	1 ↓	↑↓	↑↓	↑↓
↑↓	1 ↓	↑	1	↑

 Zn^{2+} has 0 unpaired d electrons, Co^{2+} has 3 unpaired d electrons. Co^{2+} is therefore paramagnetic and will be attracted by a magnetic field.