Calculate the pH of a 0.010 M solution of aspirin at 25 °C. The p K_a of aspirin is 3.5 at this temperature.

Marks 7

As	aspirin	is	a	weak	acid,	$[H_3O^+]$	must	be	calculated	using	a	reaction
tabl	le:											

	C ₉ H ₈ O ₄	H ₂ O	+	H_3O^+	C ₉ H ₇ O ₄ ⁻
initial	0.010	large		0	0
change	- <i>x</i>	negligible		+x	+ <i>x</i>
final	0.010 – <i>x</i>	large		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm C}_9{\rm H}_7{\rm O}_4^-]}{[{\rm C}_9{\rm H}_7{\rm O}_4]} = \frac{x^2}{0.010 - x}$$

As $pK_a = -\log_{10}K_a$, $K_a = 10^{-3.5}$ and is very small, $0.010 - x \sim 0.010$ and hence:

$$x^2 = 0.010 \times 10^{-3.5}$$
 or $x = 1.8 \times 10^{-3} \text{ M} = [\text{H}_3\text{O}^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}(1.8 \times 10^{-3}) = 2.8$$

pH = **2.8**

Aspirin, $C_9H_8O_4$ is not very soluble. "Soluble aspirin" can be made by reacting aspirin with sodium hydroxide. Write the chemical equation for this reaction.

$C_9H_8O_4(s) + OH^-(aq) \rightarrow C_9H_7O_4^-(aq) + H_2O(l)$

Is a solution of "soluble aspirin" acidic or basic? Briefly explain your answer.

Basic. The $C_9H_7O_4^-(aq)$ ion reacts with water (*i.e.* undergoes hydrolysis) to generate a small amount of OH⁻ ions. The $C_9H_7O_4^-(aq)$ ion is a weak base, so the following equilibrium reaction lies very much in favour of the reactants.

 $C_9H_7O_4(aq) + H_2O(l) \iff C_9H_8O_4(aq) + OH(aq)$