Neutral at 25 °C corresponds to $[H_3O^+(aq)] = 10^{-7}$ M and pH = 7.0. Acidic solutions have pH < 7.0 and $[H_3O^+(aq)] > 10^{-7}$ M

Answer: 10⁻⁷ M

At 95 °C the auto ionisation constant of water, K_w , is 45.7×10^{-14} . What is the pH of a neutral solution at 95 °C?

 K_w refers to the auto ionisation reaction, $2H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ so that $K_w = [H_3O^+(aq)][OH^-(aq)]$. As the solution is neutral, $[H_3O^+(aq)] = [OH^-(aq)]$. Hence:

 $K_{\rm w} = [{\rm H}_3{\rm O}^+({\rm aq})][{\rm OH}^-({\rm aq})] = [{\rm H}_3{\rm O}^+({\rm aq})]^2 = 45.7 \times 10^{-14}$ $[{\rm H}_3{\rm O}^+({\rm aq})] = 6.76 \times 10^{-7} {\rm M}$ $p{\rm H} = -log_{10}[{\rm H}_3{\rm O}^+({\rm aq})] = -log_{10}(6.76 \times 10^{-7}) = 6.17$

Marks 3