

number of moles = mass / molar mass = $359 \text{ g} / 58.44 \text{ g mol}^{-1} = 6.14 \text{ mol}$

The maximum concentration of $[C\Gamma(aq)]$ from NaCl is therefore 6.14 mol L⁻¹. As this is greater than that required to keep the lead concentration at a safe level, it could be used.

The minimum concentration of $CI^{-}(aq)$ needed is 4.7 mol L^{-1} . The number of moles required to achieve this concentration in 50,000 L is therefore:

number of moles = concentration × volume = $4.7 \text{ mol } \text{L}^{-1} \times 50000 \text{ L} = 24000 \text{ mol}$

The mass of NaCl that corresponds to this is:

mass = number of moles × molar mass = 24000 mol × 58.44 g mol⁻¹ = 1.4×10^7 g = 14 tonnes

Answer: 1.4×10^7 g or 14 tonnes

Would the water in the reservoir be fit for drinking? Explain your answer.

It would be too salty to drink and is likely to exceed safe levels of $Na^+(aq)$ and $Cl^-(aq)$.