• Complete the following tabl where indicated.	e. Make sure you give the n	name of the starting material	Marks 3
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
но	NaOH(aq)	HO	
ОН	$Cr_2O_7^{2-}/H^+$	ОН	
ОН	concentrated H ₂ SO ₄		

• Complete the following table. Make sure you give the name of the starting material where indicated.			
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
OH	NaOH	O ^O	

• The structure of (–)-linalool, a commonly occurring natural product, is shown below.				
Give the constitutional formula of the organic product formed from (–)-linalool in each of the following reactions. NB: If there is no reaction, write "no reaction".				
Reagents / Condition	ons	Constitutional Formula of Product		
Na ₂ Cr ₂ O ₇ in aqueous a	cid	no reaction		
Na, then CH ₃ Br		OCH3		

Marks • Give the name of the starting material where indicated and the constitutional formula 5 of the major organic product formed in each of the following reactions. $\underline{Na_2Cr_2O_7} / H^{\textcircled{\oplus}}$ СООН OH Name: 3-methyl-1-butanol conc. KOH, ethanol ∠Br heat Name: 1-bromobutane Θ Br $N(CH_3)_3$ \oplus ∠Br N

ANSWER CONTINUES ON THE NEXT PAGE

CHEM1002

Marks • Show clearly the reagents you would use to carry out the following chemical 5 conversion. Two steps are required. Give the structure of the intermediate compound. Br ∠Br hot KOH HBr CCl₄ solvent ethanol solvent (Addition of H-Br (Base catalysed across C=C, following elimination of H-Br Markovnikov's rule). to form C=C). How could you distinguish between the starting material and the product by ¹³C NMR spectroscopy? The starting material has 3 different carbon environments so will give 3 resonances in the ¹³C NMR. 2 1 3 BrThe produt has 2 different carbon environments so will give 2 resonances in the $^{13}C \overline{NMR}$. Br 2 1 1 The two carbon atoms labelled as '1' are equivalent.

