• Complete the following table. Make sure you give the name of the starting material where indicated.

Marks 1

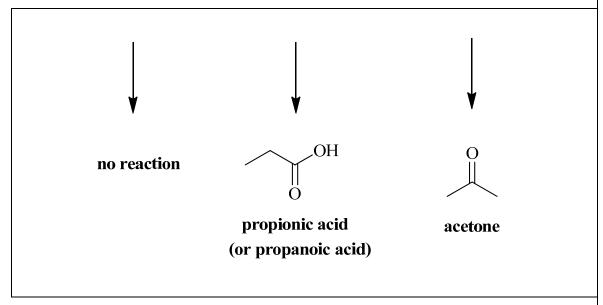
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	1. LiAlH ₄ 2. H [⊕] / H ₂ O	OH

Marks

Give the constitutional formula of the organic product formed from (+)-citronellal in each of the following reactions.

Reagents / Conditions	Constitutional Formula of Product
1. LiAlH ₄ in dry ether (solvent) 2. H ⁺ / H ₂ O	HO
HBr in CCl ₄ (solvent)	H Br
Na ₂ Cr ₂ O ₇ in aqueous acid	но Но
H ₂ / Pd-C catalyst	H

• Give the name of the starting material where indicated and the constitutional formula(s) of the major organic product(s) formed in each of the following reactions. NB: if there is no reaction, write "no reaction".


Marks 9

OH
$$\begin{array}{c}
1. \text{ LiAlH}_4 \\
\hline
2. \text{ H}^{\oplus}/\text{ H}_2\text{O}
\end{array}$$

• Compound **X** is known to have the molecular formula C₃H₈O. Draw the constitutional formulas of the three possible isomers that could be compound **X**.

Marks 5

Compound **X** reacts with acidified potassium dichromate solution to give compound **Y**. Give the possible structure(s) of compound **Y**.

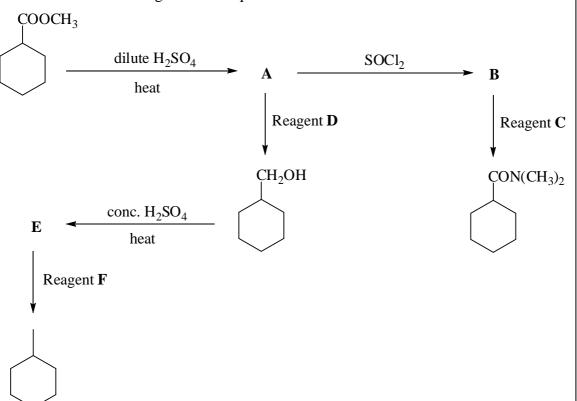
Describe a simple **chemical test** that could be used to identify compound **Y**. Give the reagent(s) used and any expected observation(s).

Propionic acid is an acid and acetone is not. Any reaction that detects the presence of an acid – such as simple addition of universal indicator – would be able to identify whether propionic acid or acetone is present.

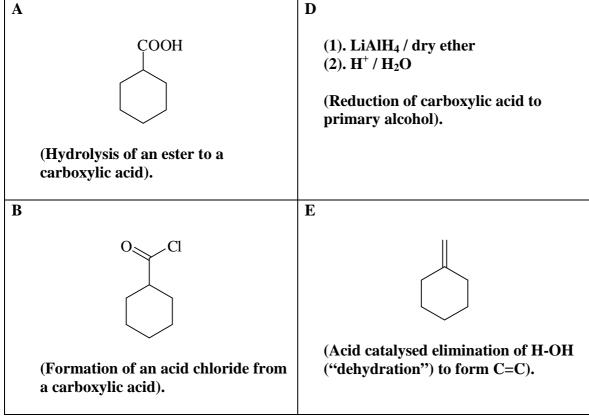
An alternative is addition of $NaHCO_3(aq)$. The propionic acid will react to produce bubbles of CO_2 . Acetone will not react.

Marks

6


• Consider the following reaction sequence.

Give the reagent B and draw the constitutional formulas of the major organic products, A, C, D, E and F, formed in these reactions.


A	D	
ОН	O O O	
В	E	•
SOCl ₂	N	
C	F	•
OCH ₃	Cl [⊖] H→N−H	

• Consider the following reaction sequence.

Marks 6

Give the reagents C, D and F and draw the structures of the major organic products, A, B and E, formed in these reactions.

ANSWER CONTINUES ON THE NEXT PAGE

 $\begin{array}{c|c} C & F \\ & \downarrow CH_3 & H_2 \, / \, Pd/C \\ & \downarrow CH_3 & (Reduction of alkene to alkane). \end{array}$

• Consider the following reaction sequence.

Marks 6

Br
$$OH^{\Theta}/H_2O$$
 A reagent B OH

Reagent D

C $CH_3CH_2)_2NH$

E CH_3OH

C CH_3OH

C CH_3OH

Give the reagents $\bf B$ and $\bf D$ and draw the structures of the major organic products, $\bf A$, $\bf C$, $\bf E$ and $\bf F$, formed in these reactions.

A	D
ОН	SOCl ₂ / heat
B Cr ₂ O ₇ ²⁻ / H ⁺	E
C O O O	F O CH ₃ OH

• Consider the following reaction sequence.

Marks 6

Give the reagents **A** and **D** and draw the structures of the major organic products, **B**, **C**, **E** and **F**, formed in these reactions.

A		D
	$\mathrm{Cr_2O_7}^{2 ext{-}}$ / H^+	SOCl ₂
В	ОН	CH ₃
С	<u>о</u>	F O CH ₃

• Classify the starting materials of the following reactions as nucleophile or electrophile and indicate with $\delta \oplus$ and $\delta \ominus$ the polarisation of the C–Br and C=O bonds.

Marks 4

6

• Consider the following reaction sequence.

A NaOH

OH

OH

$$\frac{1) \text{LiAlH}_4}{2) \text{H}^{\oplus}}$$

B

SOCl₂

excess methanol

C

 $\frac{\text{HN(CH}_3)_2}{\text{NaOH}}$

F

 $\frac{\text{conc. HCl / heat}}{\text{MaOH}}$

F

Draw the structures of the major organic products, A-F, formed in these reactions.

A	$\bigcup_{C} \bigcup_{O} \ominus$	D O O O O O O O O O O O O O O O O O O O
В	CH ₂ OH	C CH ₃
С	CCI	OH + NH ₂ (CH ₃) ₂