2004-J-3

Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.
Marks 3

• Calculate the atomic mass of silicon from the isotope information provided.

Isotope	Mass of isotope (a.m.u.)	Relative abundance
²⁸ Si	27.97693	92.21%
²⁹ Si	28.97649	4.70%
³⁰ Si	29.97376	3.09%

The relative atomic mass of silicon is the weighted average of the masses of its isotopes:

$$\left(27.97693 \times \frac{92.21}{100}\right) + \left(28.97649 \times \frac{4.70}{100}\right) + \left(29.97376 \times \frac{3.09}{100}\right) = 28.09 \,\mathrm{g \, mol^{-1}}$$

Answer: 28.09 g mol⁻¹

• Calculate the molar activity of ³H (in Curie), given its half-life of 12.26 years.

The molar activity is given by $A_{mol} = \lambda N_a$ where λ is the decay constant which is related to the half life $t_{1/2}$ by $\lambda = \frac{\ln 2}{t_{1/2}}$.

The half life = 12.26 years or $12.26 \times 365 \times 24 \times 3600$ s = 3.866×10^8 s. Hence the molar activity is:

$$A_{\rm mol} = \frac{\ln(2)}{3.87 \times 10^8 \, \rm s} \times (6.022 \times 10^{23} \, \rm disintegrations \, mol^{-1})$$

= 1.080×10^{15} disintegration s⁻¹ mol⁻¹

As 1 Ci = 3.70×10^{10} disintegrations s⁻¹, the molar activity in Curie is: $1.080 \times 10^{18} / 3.70 \times 10^{10} = 2.92 \times 10^4$ Ci mol⁻¹.

Answer: 2.92×10^4 Ci mol⁻¹

2