• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide. ${}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{2}_{1}H + {}^{0}_{1}\beta$

$${}^{2}_{1}H + 1 p \rightarrow {}^{3}_{2}He$$

$${}^{3}_{2}He + {}^{3}_{2}He \rightarrow 2 He + {}^{1}_{1}H + {}^{1}_{1}H$$

Where might these reactions occur naturally?

In stars

• The half life of ¹³¹I is 8.06 days. Calculate the activity, in Bq, of 12.0 g of pure ¹³¹I. Calculate the activity of ¹³¹I in Ci mol⁻¹.

3

The molar activity is given by $A_{mol} = \lambda N_a$ where λ is the decay constant which is related to the half life $t_{1/2}$ by $\lambda = \frac{\ln 2}{t_{1/2}}$. The half life = 8.06 days or 8.06 × 24 × 3600 s = 696384 s. Hence the molar activity is:

$$A_{mol} = (\frac{\ln 2}{696384}) \times (6.02 \times 10^{23}) = 5.99 \times 10^{17} \text{ disintegrations s}^{-1} \text{ mol}^{-1}$$

12.0 g of ¹³¹I corresponds to 12.0 / 131 = 0.092 mol. The activity of this amount of ¹³¹I is therefore $0.092 \times (5.99 \times 10^{17}) = 5.49 \times 10^{16}$ Bq

As 1 Ci = 3.70×10^{10} disintegrations s⁻¹, the molar activity in Curie is:

molar activity =
$$\frac{5.99 \times 10^{17}}{3.70 \times 10^{10}}$$
 = 1.62 × 10⁷ Ci mol⁻¹.

Answer: 5.49×10^{16} Bq	Answer: $1.62 \times 10^7 \text{Ci mol}^{-1}$
----------------------------------	--