2006-J-3

Marks • Balance the following nuclear reactions by identifying the missing nuclear particle or 3 nuclide. $^{63}_{28}$ Ni \rightarrow $^{63}_{29}$ Cu + ⁰₋₁β $^{53}_{26}\text{Fe}$ + $^{0}_{-1}\text{e}$ \rightarrow ⁵³₂₅Mn ${}^{\scriptscriptstyle 28}_{\scriptscriptstyle 14}{\rm Si} \ \ + \ {}^{\scriptscriptstyle 2}_{\scriptscriptstyle 1}{\rm H} \ \ \rightarrow \ {}^{\scriptscriptstyle 1}_{\scriptscriptstyle 0}n \ \ + \ \$ ²⁹₁₅**P** 3 • Calculate the energy (in J) and the wavelength (in nm) of the photon of radiation emitted when the electron in Be³⁺ drops from an n = 3 state to an n = 2 state. As Be³⁺ has one electron, the equation $E_n = \frac{-E_R Z^2}{n^2}$ where $E_R = 2.18 \times 10^{-18} \text{ J}$ can be used. Beryllium has Z = 4. The energies of the n = 3 and n = 2 levels are: $E_2 = \frac{-E_R(4)^2}{(2)^2} = -4E_R$ and $E_3 = \frac{-E_R(4)^2}{(3)^2} = -\frac{16}{9}E_R = 1.78E_R$ The separation is $(4 - 1.78)E_R = 2.22E_R = 2.22 \times (2.18 \times 10^{-18}) = 4.84 \times 10^{-18}$ J. As $E = \frac{hc}{\lambda}$, $\lambda = \frac{hc}{E} = \frac{(6.626 \times 10^{-34}) \times (2.998 \times 10^8)}{(4.84 \times 10^{-18})} = 4.10 \times 10^{-8} \text{ m} = 41.0 \text{ nm}$ Wavelength: **4.10** ×**10⁻⁸ m or 41.0 nm** Energy: 4.84×10^{-18} J