Marks • Balance the following nuclear reactions by identifying the missing nuclear particle or 3 nuclide. $^{60}_{29}$ Cu \rightarrow $^{60}_{28}$ Ni $+ {}^{0}_{+1}e$ $+ {}^{0}_{-1} e \longrightarrow {}^{55}_{25} Mn$ ⁵⁵₂₆Fe ${}^{1}_{0}n$ Calculate the following properties of the ¹³N nuclide, given that its half-life 3 is 9.96 minutes. (a) the decay constant in s^{-1} 9.96 minutes corresponds to $(9.96 \times 60.0) = 598$ s. The half life is related to the decay constant, λ , by $\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{598} = 1.16 \times 10^{-3} \text{ s}^{-1}$ Answer: $\lambda = 1.16 \times 10^{-3} \text{ s}^{-1}$ (b) the molar activity in Ci mol^{-1} The activity, A, is related to λ by $A = \lambda N$ where N is the number of nuclei. The activity of a mole is thus: $A = \lambda N = (1.16 \times 10^{-3}) \times (6.022 \times 10^{23}) = 6.98 \times 10^{20} \text{ Bq mol}^{-1}$ As 1 Bq = 3.70×10^{10} Bq, this corresponds to: $A = 6.98 \times 10^{20} \text{ Bq mol}^{-1} = \frac{6.98 \times 10^{20}}{3.70 \times 10^{10}} \text{ Ci mol}^{-1} = 1.89 \times 10^{10} \text{ Ci mol}^{-1}$ Answer: 1.89×10^{10} Ci mol⁻¹