
• The following relate to the electronic structure of the N_2^- molecular ion.

Marks 5

How many valence electrons are in N_2^- ?

The molecular orbital energy level diagram provided shows the energies of the orbitals for the valence electrons in N_2^- . Indicate on this diagram the ground state electronic configuration of N_2^- using the arrow notation for electron spins.

 $5 \times 2 (N) + 1 (charge) = 11$

Calculate the bond order of N_2^- .

$$\frac{1}{2}$$
 (bond electrons – antibonding electons)
= $\frac{1}{2}$ (8 – 3) = 2.5

Is the bond strength in N_2^- stronger or weaker than the bond strength in N_2 ? Why?

The triple bond in N_2 is reduced to a bond order of 2.5 in N_2 so the bond in N_2 is stronger.

(Equivalently, the extra electron in N_2 has to occupy an antibonding π^* orbital. This weakens the bond.)

Do you expect N₂⁻ to be paramagnetic? Explain your answer.

 N_2^- has an unpaired electron in the π^* orbital. It is thus expected to be paramagnetic.