

How many years will it take for the activity of this pure 1.000 g sample of 55 Fe to drop to 1.000×10^9 Bq?

The number of radioactive nuclei decays with time according to $\ln(N_0/N_t) = \lambda t$. As the activity is proportional to the number of nuclei ($A = \lambda N$), this can be rewritten as:

 $\ln(A_0/A_t) = \lambda t$

As $\lambda = 7.983 \times 10^{-9}$ s⁻¹, the activity will decay from $A_0 = 8.750 \times 10^{13}$ Bq to $A_t = 1.000 \times 10^9$ Bq in a time *t* where

```
\ln(8.750 \times 10^{13}/1.000 \times 10^{9}) = (7.983 \times 10^{-9} \text{ s}^{-1})t
t = 1.425 × 10<sup>9</sup> s
```

As 1 year is $(365 \times 24 \times 60 \times 60)$ s, this corresponds to:

 $t = 1.425 \times 10^9 / (365 \times 24 \times 60 \times 60) = 45.19$ years

Answer: 45.19 years