Scholars think that a parchment scroll recently found in the Middle East could have originated from the same group responsible for the Dead Sea Scrolls. If a modern piece of parchment has an activity of 4.0 × 10⁻⁴ Ci g⁻¹, calculate the expected activity of the recently discovered scroll if it originated 2100 years ago.
The ¹⁴C age of a sample is given by:

¹⁴C age = 8033 ln
$$\left(\frac{A_0}{A_t}\right)$$
 years

If the ¹⁴C age is 2100 years and its initial activity, $A_0 = 4.0 \times 10^{-4}$ Ci g⁻¹,

2100 years = 8033 ln
$$\left(\frac{4.0 \times 10^{-4} \text{ Ci g}^{-1}}{A_t}\right)$$

$$A_{\rm t} = 3.1 \times 10^{-4} {\rm Ci} {\rm g}^{-1}$$

Answer: $A_t = 3.1 \times 10^{-4} \text{ Ci g}^{-1}$

• ¹¹C is an unstable isotope of carbon. Which force within the ¹¹C nucleus is responsible for its instability? Explain.

2

¹¹C has 6 protons but only 5 neutrons. Stable nuclei for the lighter elements have approximately equal numbers of neutrons and protons. ¹¹C has too many protons relative to neutrons within the nucleus.

Electrostatic repulsion between protons destabilises the nucleus.

Which force is responsible for the greater stability of the 12 C isotope compared to the 11 C isotope? Explain.

¹²C has 6 protons and 6 neutrons. The one extra neutron compared to ¹¹C increases the strength of the *strong nuclear force* between all nucleons (protons and neutrons). This overcomes the electrostatic repulsion of the protons and results in a stable nucleus.