- Write two possible mechanisms for the radioactive decay of ${ }^{83} \mathrm{Rb}$ to ${ }^{83} \mathrm{Kr}$.
${ }_{37}^{83} \mathrm{Rb} \rightarrow{ }_{36}^{83} \mathrm{Kr}+{ }_{+1}^{0} e \quad$ (positron decay)
${ }_{37}^{83} \mathrm{Rb}+{ }_{-1}^{0} e \rightarrow{ }_{36}^{83} \mathrm{Kr} \quad$ (electron capture decay)

The half-life of ${ }^{83} \mathrm{Rb}$ is 86.2 days. Calculate the activity (in Bq) of an isotopically pure 1.000 g sample of ${ }^{83} \mathrm{Rb}$. (The molar mass of ${ }^{83} \mathrm{Rb}$ is $82.915110 \mathrm{~g} \mathrm{~mol}^{-1}$.)

As $1 \mathbf{m o l}$ of ${ }^{83} \mathbf{R b}$ has a mass of 82.915110 g , the number of nuclei, N, in 1.000 g is:
number of nuclei $=$ number of moles \times Avogadro's constant

$$
N=\left(\frac{1.000}{82.915110} \mathrm{~mol}\right) \times\left(6.022 \times 10^{23} \text { nuclei } \mathrm{mol}^{-1}\right)=7.263 \times 10^{21} \text { nuclei }
$$

The activity (A) is related to N by $A=\lambda N$ where λ is the decay constant. The half life, $t_{1 / 2}$, is related to the decay constant, λ, by $t_{1 / 2}=\ln 2 / \lambda$. Hence,

$$
\lambda=\ln 2 /(86.2 \times 24 \times 60 \times 60 \mathrm{~s})=9.31 \times 10^{-8} \mathrm{~s}^{-1}
$$

The activity is thus,

$$
\begin{aligned}
A=\lambda N & =\left(9.31 \times 10^{-8} \mathrm{~s}^{-1}\right) \times\left(7.263 \times 10^{21} \text { nuclei }\right) \\
& =6.76 \times 10^{14} \text { nuclei }^{-1}=6.76 \times 10^{14} \mathrm{~Bq}
\end{aligned}
$$

Answer: $\mathbf{6 . 7 6 \times 1 0} \mathbf{1 4} \mathbf{B q}$
How many days will it take for this sample to diminish to 1% of its initial activity?

The number of radioactive nuclei decays with time according to $\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$. As the activity is proportional to the number of nuclei ($A=\lambda N$), this can be rewritten as:

$$
\ln \left(A_{0} / A_{\mathrm{t}}\right)=\lambda t
$$

If the activity drops to 1% of its initial value, $A_{0} / A_{\mathrm{t}}=(100 / 1)=100$.
As $\lambda=9.31 \times 10^{-8} \mathbf{s}^{-1}$:

$$
\begin{aligned}
& \ln (100)=\left(9.31 \times 10^{-8} \mathrm{~s}^{-1}\right) t \\
& t=49000000 \mathrm{~s}=600 \text { days }
\end{aligned}
$$

