Marks • In order to predict if it is possible to form the He_2^+ cation, complete the following 6 steps. In the boxes below, draw an energy level diagram showing labelled electron orbitals and their occupancies for the two reacting species, He and He⁺. In the other box below, draw an energy level diagram showing labelled electron orbitals and their occupancies in a postulated He_2^+ molecule. Use the same energy scale. He He^+ He_2^+ Energy Draw the lobe representation of the two occupied molecular orbitals in this molecule. Show all nuclei and nodal surfaces. nodal plane σ σ^* nuclei nuclei What is the bond order of this molecular ion? It has 2 bonding (σ) and 1 antibonding (σ^*) electron. Hence: bond order = $\frac{1}{2}$ (number of bonding – number of antibonding electrons) $=\frac{1}{2}(2-1)=\frac{1}{2}$ Make a prediction about the stability of He_2^+ in comparison to the H₂ molecule. H_2 has a bond order of 1 and He_2^+ has a bond order of $\frac{1}{2}$ so the bond in H_2 is probably stronger. As the nuclear charge in He is larger than H, the bonding orbital is more stable in He₂⁺ than the bonding orbital in H₂ so the $\frac{1}{2}$ bond in He₂⁺ is likely to be more than half as strong as the single bond in H₂.