Marks Sixteen unstable isotopes of strontium are known to exist. Of greatest importance are 8 ⁹⁰Sr with a half-life of 28.78 years and ⁸⁹Sr with a half-life of 50.5 days. ⁹⁰Sr is found in nuclear fallout as it is a by-product of nuclear fission. Calculate the activity (in Bq) of 20.0 g of 90 Sr. As 1 mol of 90 Sr has a mass of 90.0 g, the number of nuclei, N, in 20.0g is: number of nuclei = number of moles × Avogadro's constant $N = (\frac{20.000}{90.0} \text{ mol}) \times (6.022 \times 10^{23} \text{ nuclei mol}^{-1}) = 1.34 \times 10^{23} \text{ nuclei}$ The activity (A) is related to N by $A = \lambda N$ where λ is the decay constant. The half life, $t_{\frac{1}{2}}$, is related to the decay constant, λ , by $t_{\frac{1}{2}} = \ln 2/\lambda$. Hence, $\lambda = \ln 2/(28.78 \times 365 \times 24 \times 60 \times 60 \text{ s}) = 7.64 \times 10^{-10} \text{ s}^{-1}$ The activity is thus, $A = \lambda N = (7.64 \times 10^{-10} \text{ s}^{-1}) \times (1.34 \times 10^{23} \text{ nuclei})$ $= 1.02 \times 10^{14}$ nuclei s⁻¹ $= 1.02 \times 10^{14}$ Bq Answer: 1.02×10^{14} Bq Calculate the age (to the nearest year) of a sample of ⁹⁰Sr that has an activity oneeighth of a freshly prepared sample. The number of radioactive nuclei changes with time according to the equation: $\ln(N_0/N_t) = \lambda t$ As the activity is proportional to the number of nuclei, this can also be written in terms of activities: $\ln(A_0/A_t) = \lambda t$ If the activity has decreased to one eighth of its original value, $A_0/A_t = 8$. Hence: $\ln(8) = (7.64 \times 10^{-10} \text{ s}^{-1}) \times t$

 $t = 2.72 \times 10^9$ s = $(2.72 \times 10^9 / (365 \times 24 \times 60 \times 60)$ years = 86.3 years

Answer: **86 years**

ANSWER CONTINUES ON THE NEXT PAGE

Determine the specific activity of 90 Sr in Ci g⁻¹.

From above, the activity of 20.0 g of 90 Sr is 1.02×10^{14} Bq so the activity of one gram is $(1.02 \times 10^{14} \text{ Bq})/(20 \text{ g}) = 5.11 \times 10^{12} \text{ Bq g}^{-1}$.

As 1 Ci = 3.70×10^{10} Bq, this corresponds to:

specific activity = $(5.11 \times 10^{12}) / (3.70 \times 10^{10})$ Ci g⁻¹ = 138 Ci g⁻¹

Answer: 138 Ci g⁻¹

⁹⁰Sr presents a long-term health problem as it substitutes for calcium in bones. Comment on why Sr can substitute for Ca so readily.

Sr has similar electronic structure to Ca - both have s^2 valence shell configuration.

The Sr^{2+} and Ca^{2+} cations have the same charge and are of similar size.