Marks • On the 6th of April 2011, after the earthquake and tsunami in Japan, levels of ¹³¹I 6 in seawater were recorded at 7.5×10^6 times the legal limit. The half-life of ¹³¹I is 8.02 days. How long will it take for the radioactivity of the initially sampled seawater to fall back to the legal limit? The radioactivity is proportional to the number of radioactive nuclei, $A = \lambda N$. As the number of radioactive nuclei varies with time according to $\ln(N_0/N_t) = \lambda t$: $\ln(A_0/A_t) = \lambda t$ Using $t_{1/2} = \ln 2 / \lambda$: $\lambda = \ln 2 / t_{1/2} = \ln 2 / 8.02 \text{ days}^{-1} = 0.0864 \text{ days}^{-1}$ if $A_0 = 7.5 \times 10^6 \times A_t$, $\ln(7.5 \times 10^6) = (0.0864 \text{ days}^-1) \times t$ t = 183 daysAnswer: 183 days Why is the ¹³¹I nucleus unstable? The ${}^{131}_{53}$ I nucleus lies outside the zone of stability - its neutron to proton ratio is too high. Write a balanced equation for a likely decay mechanism of 131 I. $^{131}_{53}$ I $\rightarrow ^{131}_{54}$ Xe + $^{0}_{-1}\beta$ Another significant seawater contaminant detected after the tsunami was ¹³⁷Cs, which has a half-life of 30 years. If you were exposed to equal concentrations of both isotopes for 1 hour, which isotope, ¹³⁷Cs or ¹³¹I, would do more damage? Explain your reasoning. ¹³¹I would do more damage. It has the shorter half-life so undergoes more disintegrations and produces more radiation in a given time period.