• How does the ratio of the number of neutrons to the number of protons in a stable or long-lived radionuclide change as the atomic number increases?	Mark 5
The proton to neutron ratio slowly increases from 1 (for deuterium) to ~1.5 for bismuth.	
For light elements, the ratio is approximately 1. As the number of protons gro increasing numbers of neutrons are needed to stabilise the nucleus.	,
After ²⁰⁸ Pb, all nuclei are unstable.	
The generation of energy in a nuclear reactor is largely based on the fission of certain long-lived radionuclides (usually 235 U or 239 Pu). The fission products include every element from zinc through to the <i>f</i> -block. Explain why most of the radioactive fission products are β -emitters.	1
The optimal ratio between the number of neutrons, <i>n</i> , and the number of protons, <i>p</i> , increases as <i>Z</i> increases.	
Simply splitting a large nucleus in two will produce nuclides with similar $n:p$ ratios to the parent, which will now be too high. They will emit negative charge to convert neutrons to protons, bringing about a more satisfactory $n:p$ ratio. <i>i.e.</i> they will be β emitters.	
Two of the more common isotopes produced in nuclear reactors are ¹³¹ I (half-life of 8.02 days) and ¹³⁷ Cs (half-life of 30 years). Both are β -emitters. If you were exposed to equal concentrations of both isotopes for 1 hour, which isotope, ¹³⁷ Cs or ¹³¹ I, would do more damage? Explain your reasoning.	 l 1
¹³¹ I would do more damage.	
It has the shorter half-life so undergoes more disintegrations and produces more radiation in a given time period.	