
• The molecular orbital energy level diagrams for H_2 , H_2^+ , H_2^- and O_2 are shown below. Fill in the valence electrons for each species in its ground state and label the types of orbitals $(\sigma, \sigma^*, \pi, \pi^*)$.

Marks 6

Give the bond order of each species.

H_2 : ½ (2 - 0) = 1	H_2^+ : ½ (1 - 0) = ½	H_2^- : ½ (2 - 1) = ½	O_2 : $\frac{1}{2}$ (8 - 4) = 2

Which of the four species are paramagnetic?

$$H_2^+$$
, H_2^- and O_2

The bond lengths of H_2^+ and H_2^- are different. Which do you expect to be longer? Explain your answer.

 H_2^- will be longer. Both have bond order of 0.5, but H_2^- is a multi-electron system so is destabilised by electron-electron repulsion. H_2^+ is single electron system so has no electron-electron repulsion.