• The isotope ${}^{60}_{27}$ Co undergoes radioactive decay to produce a stable isotope of nickel. Give the balanced equation for this decay process.

Marks 6

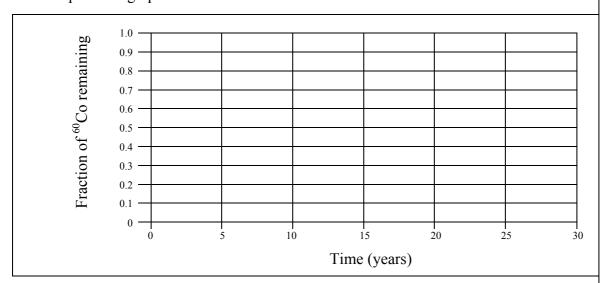
$$^{60}_{27}$$
Co $\rightarrow ^{60}_{28}$ Ni + $^{0}_{-1}e$

The half-life of 60 Co is 5 years. Calculate the value of the decay constant, λ , (in s⁻¹).

The decay constant, λ , is given by:

$$\lambda = \ln 2 / t_{1/2} = \ln 2 / (5 \times 365.25 \times 24 \times 60 \times 60 \text{ s}) = 4 \times 10^{-9} \text{ s}^{-1}$$

Answer: $4 \times 10^{-9} \text{ s}^{-1}$


What is the molar activity of ⁶⁰Co (in Bq mol⁻¹)?

The molar activity, A, is given by $A = \lambda N_A$ where N_A is Avogadro's number. Hence:

$$A = (4 \times 10^{-9} \text{ s}^{-1}) \times (6.022 \times 10^{23} \text{ particles mol}^{-1})$$

= $3 \times 10^{15} \text{ particles s}^{-1} \text{ mol}^{-1} = 3 \times 10^{15} \text{ Bq mol}^{-1}$

Answer: 3×10^{15} Bq mol⁻¹

Complete the graph below.

Estimate from the graph the fraction of ⁶⁰Co remaining after 12 years.