• The molecular orbital energy level diagrams for H_2 , H_2^+ , H_2^- and O_2 are shown below. Fill in the valence electrons for each species in its ground state and label the types of orbitals $(\sigma, \sigma^*, \pi, \pi^*)$.

Marks 6

	H ₂	$\mathrm{H_2}^+$	H ₂ ⁻	O ₂		
1			_			
Energy						

Give the bond order of each species.

	H ₂ :	$\mathrm{H_2}^+$:	H_2^- :	O ₂ :
--	------------------	--------------------	-----------	------------------

Which of the four species are paramagnetic?

The bond lengths of H_2^+ and H_2^- are different. Which do you expect to be longer? Explain your answer.