$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $	Technetium-99m is an important radionuclide for medical imaging. It is produced from molybdenum-99. Fill in the box below to give a balanced nuclear equation for the production of Tc-99m from Mo-99.	Viar 7
The half-life of Tc-99m is 6.0 hours. Calculate the decay constant, λ, in s ⁻¹ . Answer: Calculate the molar activity in Bq mol ⁻¹ . Second	$^{99}_{42}\text{Mo} \rightarrow ^{99\text{m}}_{43}\text{Tc} +$	
Answer: Calculate the molar activity in Bq mol ⁻¹ . Answer: Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Answer: Maswer: Maswer: Why is Tc-99m suitable for medical imaging? Give two reasons.	The half-life of Tc-99m is 6.0 hours. Calculate the decay constant, λ , in s ⁻¹ .	
Answer: Calculate the molar activity in Bq mol ⁻¹ . Answer: Calculate the time in hours for 90% of the activity of a sample of Te-99m to decay. Calculate the time in hours for 90% of the activity of a sample of Te-99m to decay. Mnswer: Maswer: Why is Tc-99m suitable for medical imaging? Give two reasons.		
Answer: Calculate the molar activity in Bq mol ⁻¹ . Answer: Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Answer: Maswer: Why is Tc-99m suitable for medical imaging? Give two reasons.		
Calculate the molar activity in Bq mol ⁻¹ . Answer: Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Answer: Answer: Maswer: Why is Tc-99m suitable for medical imaging? Give two reasons.	Answer:	
Answer: Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Answer: Why is Tc-99m suitable for medical imaging? Give two reasons.	Calculate the molar activity in Bq mol^{-1} .	
Answer: Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Answer: Why is Tc-99m suitable for medical imaging? Give two reasons.		
Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay. Answer: Why is Tc-99m suitable for medical imaging? Give two reasons.	Answer:	_
Answer: Why is Tc-99m suitable for medical imaging? Give two reasons.	Calculate the time in hours for 90% of the activity of a sample of Tc-99m to decay.	
Answer: Why is Tc-99m suitable for medical imaging? Give two reasons.		_
Why is Tc-99m suitable for medical imaging? Give two reasons.	Answer:	-
	Why is Tc-99m suitable for medical imaging? Give two reasons.	

ne half-life of ⁶⁰ Co is 5 years.	Calculate th	e value of th	e decay con	nstant, λ, (i	$n s^{-1}$).
	Ans	wer:			
hat is the molar activity of ⁶⁰	Co (in Bq mo	$l^{-1})?$			
	Ans	wer:			
omplete the graph below.					
0.6 0.5					
jo 0.4					
0.3 0.2 0.2					
17		15	20	25	30

•	Radioactivity may have damaging effects on humans but can also be used for medical imaging to potentially save lives. Which of alpha and gamma radiation is better suited for medical imaging? Give reasons.	Marks 4
	Given nuclides with half-lives of minutes, hours or years, which would be best used	
	for medical imaging? Explain.	

		Marks
•	The generation of energy in a nuclear reactor is largely based on the fission of either ²³⁵ U or ²³⁹ Pu. The fission products include every element from zinc through to the	5
	<i>f</i> -block. Explain why most of the radioactive fission products are β -emitters.	
		_
		_
	The radioactivity of spent fuel rods can be modelled by the exponential decay of 137 Cs, which has a half life of 20.22 years. What is the gravific activity of 137 Cs.	
	in Bq g^{-1} ?	
		_
		-
	Answer:	

• On the 6 th of April 2011, after the earthquake and tsunami in Japan, levels of ¹³¹ I in seawater were recorded at 7.5×10^6 times the legal limit. The half-life of ¹³¹ I is 8.02 days. How long will it take for the radioactivity of the initially sampled seawater to fall back to the legal limit?	Marks 6
Answer:	
Why is the ¹³¹ I nucleus unstable?	
Write a balanced equation for a likely decay mechanism of ¹³¹ I.	
Another significant seawater contaminant detected after the tsunami was ¹³⁷ Cs, which has a half-life of 30 years. If you were exposed to equal concentrations of both isotopes for 1 hour, which isotope, ¹³⁷ Cs or ¹³¹ I, would do more damage? Explain your reasoning.	

• How does the ratio of the number of neutrons to the number of protons in a stable or long-lived radionuclide change as the atomic number increases?	Marks 5
The generation of energy in a nuclear reactor is largely based on the fission of certain long-lived radionuclides (usually 235 U or 239 Pu). The fission products include every element from zinc through to the <i>f</i> -block. Explain why most of the radioactive fission products are β -emitters.	
Two of the more common isotopes produced in nuclear reactors are ¹³¹ I (half-life of 8.02 days) and ¹³⁷ Cs (half-life of 30 years). Both are β -emitters. If you were exposed to equal concentrations of both isotopes for 1 hour, which isotope, ¹³⁷ Cs or ¹³¹ I, would do more damage? Explain your reasoning.	

• Radon gas decays into polonium with a half-life of 3.82 days via the following mechanism:

$$^{222}_{86}$$
Rn $\rightarrow ^{218}_{84}$ Po + $^{4}_{2}$ He

Give three reasons why $^{222}_{86}$ Rn is biologically a very harmful nuclide.

• Consider the process of electron capture by the manganese-54 isotope.	Marks 3
Write a balanced nuclear formula.	

CHEM1101

201011		
Sixteen unstable isotopes of strontium are ⁹⁰ Sr with a half-life of 28.78 years and ⁸⁹ S in nuclear fallout as it is a by-product of n	known to exist. Of greatest importance are for with a half-life of 50.5 days. ⁹⁰ Sr is found nuclear fission.	Marks 8
Calculate the activity (in Bq) of 20.0 g of	⁹⁰ Sr.	
	Γ.	
	Answer:	_
Calculate the age (to the nearest year) of a eighth of a freshly prepared sample.	a sample of ⁹⁰ Sr that has an activity one-	
	Answer:	-
		_
Determine the specific activity of ²⁰ Sr in (C1 g ⁻ .	_
	Answer:	
⁹⁰ Sr presents a long-term health problem a Comment on why Sr can substitute for Ca	as it substitutes for calcium in bones.	
-		4

•	Scholars think that a parchment scroll recently found in the Middle East could have originated from the same group responsible for the Dead Sea Scrolls. If a modern piece of parchment has an activity of 4.0×10^{-4} Ci g ⁻¹ , calculate the expected activity of the recently discovered scroll if it originated 2100 years ago.	Marks 2
	Answer:	_
•	¹¹ C is an unstable isotope of carbon. Which force within the ¹¹ C nucleus is responsible for its instability? Explain.	2
		_
	¹¹ C isotope? Explain.	

	• Write two possible mechanisms for the radioactive decay of ⁸³ Rb to ⁸³ Kr.	Marks 5
ſ		
_	The half-life of ⁸³ Rb is 86.2 days. Calculate the activity (in Bq) of an isotopically pure 1.000 g sample of ⁸³ Rb. (The molar mass of ⁸³ Rb is 82.915110 g mol ⁻¹ .)	
	Answer:	
L	How many days will it take for this sample to diminish to 1 % of its initial activity?	
Γ		
	Answer:	

		5
The activity of an isotopically pure 1.000 8.750×10^{13} Bq. Calculate the half-life (i) (The molar mass of ⁵⁵ Fe is 54.94 g mol ⁻¹).	g sample of ⁵⁵ Fe is measured as in days) of ⁵⁵ Fe. .)	
	Answer	
How many years will it take for the activities to 1.000×10^9 Bq?	ity of this pure 1.000 g sample of 55 Fe to drop)
	Answer:	-

he half-life of ¹⁴ C is 5730 yea iven that each atom weighs 14	rs. What is the activity of precisely 1 g of this isoto 4.00 amu? Give your answer in Bq.	ope,
	Answer:	
arbon-14 is used as a radioact <i>lelicobacter pylori</i> . Name an	ive tracer in the urea breath test, a diagnostic test for instrument which can be used to detect radioactive	or
arbon dioxide in the breath of	a patient.	
arbon dioxide in the breath of	a patient.	
arbon dioxide in the breath of	a patient.	
arbon dioxide in the breath of patient ingests 1.00 g of urea	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of a patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of a patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of a patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of A patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	
arbon dioxide in the breath of A patient ingests 1.00 g of urea ercentage, by weight, of carbo	a patient. a with a total activity of 1.00 μCi. What is the on-14 in this sample?	

Marks • Balance the following nuclear reactions by identifying the missing nuclear particle or 3 nuclide. $_{26}^{55}\mathrm{Fe}$ + $_{-1}^{0}\mathrm{e}$ \rightarrow ${}^{3}_{2}\text{He} + {}^{3}_{2}\text{He} \rightarrow 2 {}^{1}_{1}p +$ ${}^{^{15}}_{^{7}}N \hspace{0.1cm} + \hspace{0.1cm} {}^{^{1}}_{^{1}}p \hspace{0.1cm} \rightarrow \hspace{0.1cm} {}^{^{15}}_{^{8}}O \hspace{0.1cm} + \hspace{0.1cm}$ 2 • Calculate the atomic mass of lead from the isotope information provided. Mass of isotope (a.m.u.) Isotope Relative abundance ²⁰⁴Pb 203.97304 1.40% ²⁰⁶Pb 205.97446 24.10%²⁰⁷Pb 206.97589 22.10% ²⁰⁸Pb 207.97664 52.40%

Answer:

• Calculate the molar activity of ¹¹C (in curie), given its half-life of 20.3 minutes.

3

Answer:

• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.				
$_{29}^{60}$ Cu \rightarrow $+$ $_{+1}^{0}$ e				
$+ {}^{0}_{-1} e \longrightarrow {}^{55}_{25} Mn$				
$^{28}_{14}\mathrm{Si}$ + $^{2}_{1}\mathrm{H}$ \rightarrow $^{29}_{15}\mathrm{P}$ +				
• Calculate the following properties of the ¹³ N nuclide, given that its half-life is 9.96 minutes.	3			
(a) the decay constant in s^{-1}				
Answer:				
(b) the molar activity in Ci mol^{-1}				
Answer:				

• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.				
$^{63}_{28}\text{Ni} \rightarrow ^{6}_{2}$	³³ ₉ Cu +			
$^{53}_{26}$ Fe +	$^{0}_{-1}e \rightarrow$			
$^{28}_{14}$ Si + $^{2}_{1}$ H -	$\rightarrow {}^{1}_{0}n +$			
• Calculate the energy (in J) and the wavelength (in nm) of the photon of radiation emitted when the electron in Be ³⁺ drops from an $n = 3$ state to an $n = 2$ state.				
Energy:	Wavelength:			

Marks • Balance the following nuclear reactions by identifying the missing nuclear particle or 3 nuclide. $^{55}_{26}\mathrm{Fe}$ + $^{0}_{-1}\mathrm{e}$ \rightarrow $^{2}_{1}H + ^{1}_{1}H \rightarrow ^{3}_{2}He +$ $^{15}_{7}N$ + $^{1}_{1}p$ \rightarrow $^{15}_{8}O$ + 2 • Calculate the atomic mass of silicon from the isotope information provided. Isotope Mass of isotope (a.m.u.) Relative abundance ²⁸Si 27.97693

92.21%

4.70%

3.09%

Answer:

• Calculate the molar activity of ³H (in Curie), given its half-life of 12.26 years.

28.97649

29.97376

²⁹Si

³⁰Si

3

Answer:

•	Balance the following nuclide.	g nuclear reactions by	y identifying the missing nucl	ear particle or	Marks 4
		$^{1}_{1}\mathrm{H} + ^{1}_{1}\mathrm{H} \rightarrow$	² ₁ H +		
		² ₁ H +	$\rightarrow {}_{2}^{3}\text{He}$		
		${}_{2}^{3}\text{He} + {}_{2}^{3}\text{He} \rightarrow$	$+ {}^{1}_{1}H + {}^{1}_{1}H$		
	Where might these re-	actions occur natural	lly?		-
•	• The half life of ¹³¹ I is 8.06 days. Calculate the activity, in Bq, of 12.0 g of pure ¹³¹ I. Calculate the activity of ¹³¹ I in Ci mol ⁻¹ .				
			Γ		-
Ar	iswer:	Bq	Answer:	Ci mol ⁻¹	