Marks

7

• Electron affinity is the enthalpy change for the reaction $A(g) + e \rightarrow A^{-}(g)$. The graph below shows the trend in electron affinities for a sequence of elements in the third row of the Periodic Table.

Give the electron configurations of the following atoms and singly-charged anions. Use [Ne] to represent core electrons.

Atom	Electron configuration	Ion	Electron configuration
Si		Si ⁻	
Р		P ⁻	
S		S^{-}	

Explain why the value for the electron affinity of phosphorus is anomalous.

What trend would you expect for the electron affinities for Si⁻, P⁻ and S⁻? Explain your answer.

licon and tin hav	_		
con and tin hav	_		
on and tin hav	_		
on and tin hav			
con and tin hav			
owing table to p	e the same structure as predict the density of t	s diamond. Use the info	ormation in the
Element	Atomic Mass	Density (g cm ⁻³)	Bond length (pm)
Si	28	2.329	233
Sn	118		280

Explain the trend in the first ionisation energy of these elements.

•

The electron affinity is negative if energy is released upon addition of an electron. If it is positive, the resultant anion is unstable. Explain why beryllium has a positive electron affinity, while that of fluorine is highly negative.	Marks 6
Why is the ionisation potential of oxygen slightly smaller than nitrogen, despite being further across the period?	
How is this related to the slightly positive electron affinity of nitrogen?	

Flamant		Re	R		N		
Element		Бе	D	C	IN	_	
ΔH (in kJ mol ⁻¹)	-60	+241	-27	-122	+8		
Briefly explain the fo	llowing co	ncepts and	their electi	onic origin	s.		_
Briefly explain the fo paramagnetism	llowing co	ncepts and	their electi	onic origin	s.		
Briefly explain the fo	llowing co	ncepts and	their electi	onic origin	s.		
Briefly explain the fo	llowing co	ncepts and	their electi	ronic origin	s.		
Briefly explain the fo) paramagnetism	llowing co	ncepts and	their electr	ronic origin	<u>s.</u>		
Briefly explain the fo) paramagnetism	llowing co	ncepts and	their electr	onic origin	s.		
Briefly explain the fo paramagnetism	llowing co	ncepts and	their electr	onic origin	s.		
Briefly explain the fo paramagnetism	llowing co	ncepts and	their electr	onic origin	s.		
Briefly explain the fo paramagnetism	llowing co	ncepts and	their electr	onic origin	s.		

 Explain the trends in electron affinities for the first 5 elements of the second row of the periodic table, in terms of their electronic configurations. <i>i.e.</i> Discuss the trend in Δ<i>H</i> for the following reaction: A(g) + e⁻ → A⁻(g) 							S
Element	Li	Be	В	С	Ν		
ΔH (in kJ mol ⁻¹)	-60	+241	-27	-122	+8		

• Explain why, in general, there is a decrease in atomic radius from left to right across the second row of the periodic table (lithium to neon), but an abrupt increase in radius on going to the next row.	Marks 4