Marks • The molecular orbital energy level diagrams for H₂, H₂⁺, H₂⁻ and O₂ are shown below. Fill in the valence electrons for each species in its ground state and label the types of 6 orbitals (σ , σ^* , π , π^*). H_2 H_2^+ H_2^- **O**₂ Energy Give the bond order of each species. H_2^+ : H₂: H₂⁻: O₂: Which of the four species are paramagnetic? The bond lengths of H_2^+ and H_2^- are different. Which do you expect to be longer? Explain your answer.

Marks • The molecular orbital energy level diagrams for F₂ and B₂ are shown below. Fill in 3 the valence electrons for each species in its ground state. Hence calculate the bond order for F₂ and B₂ and indicate whether these molecules are paramagnetic or diamagnetic. $F_{2} \\$ B_2 σ^* σ^* π^* π^* σ Energy π - π Energy σ σ^* σ^* σ σ Bond order Paramagnetic or diamagnetic

Clearly label the HOMO and LUMO of O₂ on the diagram above.

•	In order to predict if it is possible to form the He_2^+ cation, complete the following steps.	Marks 6
	In the boxes below, draw an energy level diagram showing labelled electron orbitals and their occupancies for the two reacting species, He and He^+ .	
	In the other box below, draw an energy level diagram showing labelled electron orbitals and their occupancies in a postulated He_2^+ molecule. Use the same energy scale.	
	He He ⁺ He ₂ ⁺	-
	Draw the lobe representation of the two occupied molecular orbitals in this molecule. Show all nuclei and nodal surfaces.	_
		_
	What is the bond order of this molecular ion?	_
	Make a prediction about the stability of He_2^+ in comparison to the H ₂ molecule.	